
The Developer’s Guide 
to Test Automation

Agile Development Conference East
Better Software Conference East

Half-day Tutorial
Monday, November 11, 2013 — 1:00pm - 4:30pm

Dale Emery! George Dinwiddie
@dhemery! @gdinwiddie
http://dhemery.com/! iDIA Computing, LLC
! http://blog.gdinwiddie.com/
! http://idiacomputing.com/

http://dhemery.com
http://dhemery.com
http://idiacomputing.com
http://idiacomputing.com




Contents

..............................................................................................Essential Vs. Incidental 1
........................................................................................................Incidental details 7

....................................................................Using Data Values in Automated Tests 14
........................................................Tests as Examples of System Responsibilities 21

......................................................................................................Essential Details 26
............................................................................................Implementation Details 29

...........................................................................................................Context setup 32
.........................................................................................................Complex Tests 34

................................................Writing Maintainable Automated Acceptance Tests 36
..............................................................................Four Layers in Automated Tests 47
..............................................................................What Do You Want From Tests? 51

...................................................................What Do You Want From a Diagnosis? 53
..............................................................................................Diagnostic Assertions 64

...................................................................................................Naming Unit Tests 73
......................................................................................................Testing the Tests 75
.......................................................................................................Testing in Depth 76

....................................................Testing Classes in Isolation and in Collaboration 78
.............................................................Test-driving those “non-functional” stories 79

..............................................................................................Design for Testability 80

 Appendices

..............................................................................The testers get behind at the end 83
......................................................................................Planned Response Systems 85

............................................................................The Anatomy of a Responsibility 87
.......................................................................The Unbearable Lightness of Faking 89

..................................................................If you don’t automate acceptance tests? 92

....................................................................................................... Footnotes 94





Essential Vs. Incidental
I want an automated test not only to test a system responsibility, but also to describe the
responsibility it is testing. To make tests expressive and maintainable, we must separate the
essential details from the incidental ones. And to do that, we must know how to distinguish
essence from incidentals.

Let’s explore the idea of essence at two scopes: the essence of the system as a whole, and the
essence of a given responsibility.

The essence of a planned response system is the set of responsibilities allocated to the
system.

The essence of a responsibility is the obligation to respond to a specified event in a
specified context by producing planned results.

The essence of a responsibility and the essence of the system are defined in terms of three
concepts:

Event: An occurrence of interest to the system.
Result: An effect produced by the system.
Context: A set of conditions inside and outside the system.

Essence is Independent of Implementation
Technology
Note that none of the concepts that make up our definitions of essence – event, result, and
context – depend on what technology we use to implement the system. And none of them
constrain our choices of technology. This independence from technology is the key distinction
between essential and incidental:

Essence is independent of implementation technology.

Whenever we speak of the technology used to implement a system, we are speaking not of the
essence of the system, but of incidental details.

With these distinctions in mind, we can define essential and incidental:

Essential: Inherent in the definition of the responsibility.

Incidental: Chosen to satisfy the implementation.

1 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



A Subtle Distinction: Technology at the System
Boundary
When I talk about essence being independent of implementation technology, I mean specifically
the technology inside the boundary of the system.

Technology at the boundary. Sometimes the definition of the system’s responsibilities
requires the use of specific technology at the boundary of the system.

This is a subtle distinction that matters when our system has the responsibility to interact with
other systems, either to sense signals from them or to send messages to them.

Sensing signals. Suppose the events that trigger our system’s responsibilities occur inside
upstream systems. When an event occurs in the upstream system, it sends some signal
through some technology. Our system, in order to perform its resposibilities, must sense those
signals. So the boundary of our system must use a technology that can sense the signals. The
technology at the boundary of our system depends on the technology of the upstream system.

Sending messages. Suppose our system has the responsibility to send a message to another
system. In this case, the boundary of our system must use a technology that can send a
message to the downstream system. The technology at the boundary of our system depends on
the technology of the downstream system.

Test Implementation and System Implementation
In general, we want our top-level test code (the code that directly expresses the responsibility
being tested) not to refer to incidental details of technology. This of course includes references
to the technology used to implement the system were testing. But we also want to avoid
references to the lower-level technology we are using to implement the tests.

Techniques to Distinguish Essence from
Incidentals
Here are some techniques I use to determine whether a detail in my test code refers to
inessential technology.

Incidental By Definition

We can apply the definition of incidental directly by asking a few questions about any given
detail:

2 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Does this detail refer to any element of the technology used to implement the system?

If so, the detail is an incidental detail. Common incidental details of this sort include buttons, text
fields, screens, keyboard, mice, and any other references to elements of a graphical user
interface (GUI).

If we were to use a different test technology to implement this test, would this name still be
appropriate?

Note the subtle difference between this question and the previos one. We’re asking not whether
the test code refers to an element of technology, but whether it names one. Every detail in an
automated test must of necessessity refer to elements of test technology. So what starts to
matter here is the names we use, and what ideas the names evoke in readers’ minds.

To clarify, let’s look at two small examples, each of which submits an expense item to an
expense reporting system. Here’s the first example:

selenium.sendKeys(ITEM_NAME,5"Zeno's5Diet5Chocolate5Brownies");

selenium.sendKeys(ITEM_PRICE),5"$1.49");

selenium.click(SUBMIT);

This code uses the names ITEM_NAME , ITEM_PRICE , and SUBMIT , each of which nicely refers to
an essential detail of the responsibility being tested.

The code also names two concepts that come from the choice of system technology: typing
keys and clicking. Our earlier question would identify these as incidental details, so let’s ignore
them here.

There is one more name, a troublesome one: selenium . This name refers not to the system’s
implementation, or to an essential detail of the responsibility. It names an element of test
technology. If we were to change our test code to use Sahi or WebRat instead of Selenium to
interact with the system, this name would no longer be appropriate.

Here’s a second example:

submitExpense("Zeno's5Diet5Chocolate5Brownies",5"$1.49");

This example does not mention Selenium or its methods. a Java method (defined somewhere)
called submitExpense . The key here is that the “submit expense” is the name of a domain
concept, and not (merely) a test technology concept.

So perhaps another way to phrase this second question:

3 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The Fantasy of Perfect Technology

Another way to distinguish essence from incidentals is to indulge in The Fantasy of Perfect
Technology. Imagine a system implemented using perfect technology. Then ask yourself some
questions about the quality attributes of the system.

How fast would it respond? If it were made of perfect technology, of course it would
respond instantly, with zero delay.
How many users could use it at once? An infinite number of users.
How much information could it store? An infinite amount.
How often would it break? It would never break.
How long does it take to start up? None, because it’s always on and always available.
How much energy would it use? It would use no energy; heck, it might even generate
energy for free.

The one glaring flaw of perfect technology is that it does not exist. Real-world technology is
imperfect. That’s what makes this exercise a fantasy. But it’s a useful fantasy, because it helps
us to separate the system’s essential responsibilities from the temporary constraints of current
technology.

Note that we apply the Fantasy of Perfect Technology only inside the boundary of the system.
Even in our fantasy, the world outside of the system is made of real, imperfect stuff, with which
the system will have to interact.

Now apply the fantasy to your own system. What responsibilities would your system have even
if you could implement it using perfect technology? That set of responsibilities is your system’s
essence.

This suggests a subtle question that we can ask whenever our test code refers to some element
of system technology:

Is this element inside the boundary of the system?

If it is absolutely required in order to interact with some other system, then it may be on the
boundary of our system. And it may be okay to cite it in the test. Maybe. This conclusion always
warrants extra scrutiny.

If the element is not absolutely required by some external system, it is likely an incidental detail.
Here is the final test:

Is this element of technology perfect?

If the technology exists today in our universe, you know how to answer that one.

4 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The Dale’s Brothers Heuristic

Imagine a warehouse full of parts for agricultural machinery – fertilizer sprayers, wood chippers,
small tractors, and so on. Imagine that you are responsible for managing the inventory in the
warehouse. Imagine that you had some kind of system that could help you manage the
inventory.

General responsibilities. Here is a small sample of the things you might want the system to do
for you:

Record the location of each part.
Record each transaction that moves parts into or out of the warehouse.
Record how many of each part are currently in stock.
Notify you when the stock for a given part falls below some threshold, so that you can
order more.
Identify the suppliers of each part.

Common features of implementation technology. If you were going to implement the
system, there are some common features that the implementation technology would have to
provide:

A means of receiving input from the user and sending information to the user. The system
must have an interface of some kind through which the system and its users can interact.
An information processor. The system must have some means of, for example, calculating
whether a transaction reduces the stock level of a part below the reorder threshold.
A means of storing information. The system must have some means of remembering
information, and later retrieving it for use in calculations and user interactions.

Essential tests. Suppose you had to write automated tests for this system? What tests would
you write for such a system?

Before you answer, consider that you don’t yet know anything about the technology that will be
used to implement the system. So you will have to write your tests with no knowledge of
implementation technology.

What tests would you write? How would you write them?

Possible implementation technologies. Now imagine a variety of technologies that you might
use to implement such a system.

A mainframe computer with text-based terminals.
A Ruby on Rails web application.
A Windows .NET application with a graphical user interface.
A client/server system with a web service back end and mobile clients for iOS, Andriod,

5 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



and Google Glass.

H. L. Emery, Inc. My father ran such a warehouse in southern Maine. The manufacturers
whose parts he warehoused repeatedly begged him to install their preferred high-tech inventory
management systems. But my father was satisfied with the features of his current system,
which he had used for thirty years.

My father’s system was not computerized, but the technology he used to implement the system
did have all of the features we listed above:

Information storage: Manila cards in a metal bin.
Input and output. Pencils.
Processor. My brothers Glenn and Gregg.

The Dale’s Brothers Heuristic. I uses a heuristic to help me notice when my tests make
assumptions about implementation technology:

How would I write this test if I knew absolutely nothing about the technology used to
implement the system?

Here is another way to state the heuristic. I call it the Dale’s Brothers Heuristic:

How would I write this test if I did not know whether the system would be implemented by
computers or by my brothers wielding pencils?

If you don’t have brothers, you are welcome to borrow mine.

Super-intelligent magical monkeys. If the differences between computers and my brothers
don’t help you distinguish essence from incidentals, make up your own fanciful technnologies.

How would I write this test if I did not know whether the system would be implemented:

by computers
by a horde of super-intelligent monkeys?
by a magical fairy with a magic wand?
by super-intelligent magical monkeys with magic wands?

6 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Incidental details
In our tests, we need to make a decision about what details to highlight, and what details to
hide. We want our tests to

highlight the aspects they are checking
communicate the rules being checked to someone who doesn’t know them
be obviously correct to someone who knows the rules.

Large amount of incidental details
When we have a large number of details, it’s hard to pick out which ones are significant.

Scenario:5Reimbursement5for5travel5meals

55When5I5spend5$3.495for5an5egg5sandwich5at5breakfast

55And5I5spend5$1.495for5a5cup5of5coffee5at5breakfast

55And5I5spend5$0.305for5tax5at5breakfast

55And5I5spend5$1.005for5tip5at5breakfast

55And5I5spend5$7.995for5a5ham5sandwich5at5lunch

55And5I5spend5$1.995for5french5fries5at5lunch

55And5I5spend5$1.995for5a5soda5at5lunch

55And5I5spend5$0.725for5tax5at5lunch

55And5I5spend5$2.005for5tip5at5lunch

55And5I5spend5$18.995for5meat5loaf5and5mashed5potatoes5at5dinner

55And5I5spend5$1.995for5iced5tea5at5dinner

55And5I5spend5$6.505for5a5glass5of5wine5at5dinner

55And5I5spend5$1.655for5tax5at5dinner

55And5I5spend5$5.005for5tip5at5dinner

55Then5I5should5receive5$43.005in5reimbursement

What is this test testing? Is it significant that I had an egg sandwich? Or that it cost $3.49? Are
tax and tips important details? The incidental details obscure the essential details. When we
read the test, we can’t determine which is which.

Does this test represent the business requirements? I can’t tell from this test what those
requirements are. Someone who knows the requirements would likely have to get out a
calculator to verify the test. It would be easy for an error in the calculation to go unnoticed.

7 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Reducing incidental details
When we eliminate a lot of incidental details, the essential ones are more visible.

Scenario:5Reimbursement5for5travel5meals

55When5I5spend5$6.285for5breakfast55

55And5I5spend5$14.695for5lunch55

55And5I5spend5$30.205for5dinner,5including5$6.505for5a5glass5of5wine

55Then5I5should5receive5$43.005in5reimbursement55

Now, this is better. Most of the details are gone. We can assume that, for this test, the amount
for each meal, as well as which meal it is, is apparently important.

What about that glass of wine? What’s significant about that? Could it be a bottle of wine? A
glass of beer? A Pepsi-Cola?

Scenario:5Reimbursement5for5travel5meals

55When5I5spend5$6.285for5breakfast55

55And5I5spend5$14.695for5lunch55

55And5I5spend5$30.205for5dinner,5including5$6.505for5alcohol

55Then5I5should5receive5$43.005in5reimbursement55

In this case, the essential detail is that it’s an alcoholic drink. What type of alcoholic drink is
incidental. Having removed the incidental details, the business rule is discernible and the test is
obviously correct.

Wait! Is that right? Where did the $43.00 come from? Maybe there are some essential details
not shown.

When a lot of incidental details are supplied, it’s harder to notice that essential details are
missing. It’s a classic case of not being able to see the forest because of all the trees in the
way.

8 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Making essential details explicit
In our previous example, some essential details about the context of the test are hidden.
We cannot understand this test without knowing those. Rather than have to look elsewhere for
this information, we can specify it right here.

Let’s specify the reimbursement limits in the test. Then we can check the numbers.

Scenario:5Reimbursement5for5travel5meals

55Given5the5maximum5reimbursement5for5breakfast5is5$5.00

55And5the5maximum5reimbursement5for5lunch5is5$15.00

55And5the5maximum5reimbursement5for5dinner5is5$25.00

55And5alcohol5is5not5reimbursable

55When5I5spend5$6.285for5breakfast55

55And5I5spend5$14.695for5lunch55

55And5I5spend5$30.205for5dinner,5including5$6.505for5alcohol

55Then5I5should5receive5$43.005in5reimbursement55

Do the numbers make sense now? Let’s see… Breakfast is limited to $5.00; lunch is below the
limit, and so is dinner if we subtract the glass of wine. So, $5.00 + $14.69 + $30.20 - $6.50 =
$43.39. It takes some figuring, but that looks closer.

What happened to the 39 cents? Oh, sales tax is 6% and we’re not getting reimbursed for the
tax on the wine, either. I’ll add that detail to the the test.

Scenario:5Reimbursement5for5travel5meals

55Given5the5maximum5reimbursement5for5breakfast5is5$5.00

55And5the5maximum5reimbursement5for5lunch5is5$15.00

55And5the5maximum5reimbursement5for5dinner5is5$25.00

55And5alcohol5is5not5reimbursable

55And5sales5tax5is56%

55And5sales5tax5on5alcohol5is5not5reimbursable

55When5I5spend5$6.285for5breakfast55

55And5I5spend5$14.695for5lunch55

55And5I5spend5$30.205for5dinner,5including5$6.505for5alcohol

55Then5I5should5receive5$43.005in5reimbursement55

Now we have our rules clearly defined. A little math shows that the test is checking for the
correct answer. It does take some math, though. If one of these numbers was changed, would
we notice the problem? If this test did not pass, would we know where our code might be
wrong?

9 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Splitting out conditions
This test is testing a lot of conditions all at once. When the test indicates a problem, it could be
a problem with any of these conditions. We would have to do some debugging or write some
more tests to determine which condition had the problem.

If we split each condition into a separate test, we can determine where the problem lies by
which test fails.

Scenario:5Reimbursement5limit5for5breakfast

55Given5the5maximum5reimbursement5for5breakfast5is5$5.00

55When5I5spend5$6.285for5breakfast55

55Then5I5should5receive5$5.005in5reimbursement55

Scenario:5Reimbursement5limit5for5lunch

55Given5the5maximum5reimbursement5for5lunch5is5$15.00

55When5I5spend5$14.695for5lunch55

55Then5I5should5receive5$14.695in5reimbursement55

Scenario:5Reimbursement5for5dinner

55Given5the5maximum5reimbursement5for5dinner5is5$25.00

55And5alcohol5is5not5reimbursable

55And5sales5tax5is56%

55And5sales5tax5on5alcohol5is5not5reimbursable

55When5I5spend5$30.205for5dinner,5including5$6.505for5alcohol

55Then5I5should5receive5$23.315in5reimbursement55

When I do this, I notice that I’m testing only one condition for each meal. What about a test
where lunch is over the reimbursement limit?

Scenario:5Lunch5under5reimbursement5limit

55Given5the5maximum5reimbursement5for5lunch5is5$15.00

55When5I5spend5$14.695for5lunch55

55Then5I5should5receive5$14.695in5reimbursement55

Scenario:5Reimbursement5limit5for5lunch

55Given5the5maximum5reimbursement5for5lunch5is5$15.00

55When5I5spend5$15.695for5lunch55

55Then5I5should5receive5$15.005in5reimbursement55

Repeating the Given condition in each test is a duplication I don’t need. I intend for all of these
to be the same, so I’ll move it out to a common fixture setup. These are essential details

10 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



associated with the suite of tests for this fixture, rather than with the individual tests. We’ll want
to name the Feature to refer to the fixture setup.

Feature:5Reimbursement5rules5and5limits

5555As5a5stingy5middleman5with5a5monopoly5on5corporate5contracting

5555I5want5to5nickle5and5dime5consultants5with5byzantine5rules

5555In5order5to5minimize5payouts5and5maximize5profits.

5555There5are5perbmeal5limits5on5the5amount5of5reimbursement.5

5555Alcoholbrelated5expenses5are5never5reimbursable.

55Background:

5555Given5the5maximum5reimbursement5for5breakfast5is5$5.00

5555And5the5maximum5reimbursement5for5lunch5is5$15.00

5555And5the5maximum5reimbursement5for5dinner5is5$25.00

5555And5alcohol5is5not5reimbursable

5555And5sales5tax5is56%

5555And5sales5tax5on5alcohol5is5not5reimbursable

55Scenario:5Reimbursement5limit5for5breakfast

5555When5I5spend5$6.285for5breakfast55

5555Then5I5should5receive5$5.005in5reimbursement55

55Scenario:5Lunch5under5reimbursement5limit

5555When5I5spend5$14.695for5lunch55

5555Then5I5should5receive5$14.695in5reimbursement55

55Scenario:5Reimbursement5limit5for5lunch

5555When5I5spend5$15.695for5lunch55

5555Then5I5should5receive5$15.005in5reimbursement55

55Scenario:5Reimbursement5for5dinner

5555When5I5spend5$30.205for5dinner,5including5$6.505for5alcohol

5555Then5I5should5receive5$23.315in5reimbursement55

11 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Clarifying more conditions
We can continue to write scenarios for each condition, each meal both within and over the
reimbursement limit, but we can also generate these variations from a table. Using a table
makes it clearer to notice whether or not we’ve covered all the significant variations.

Background:

55Given5the5maximum5reimbursement5for5breakfast5is5$5.00

55And5the5maximum5reimbursement5for5lunch5is5$15.00

55And5the5maximum5reimbursement5for5dinner5is5$25.00

55And5alcohol5is5not5reimbursable

55And5sales5tax5is56%

55And5sales5tax5on5alcohol5is5not5reimbursable

Scenario5outline:5Reimbursement5limits

55Given5I5spend5<cost>5on5<meal>

55Then5I5should5receive5<amount>5for5<reason>

55Examples:

|5meal555555|55cost5|5amount5|5reason5555555555555555|

|5breakfast5|554.995|554.9955|5breakfast5under5limit5|

|5breakfast5|555.015|555.0055|5breakfast5over5limit55|

|5lunch55555|514.995|514.9955|5lunch5under5limit55555|

|5lunch55555|515.015|515.0055|5lunch5over5limit555555|

|5dinner5555|524.995|524.9955|5dinner5under5limit5555|

|5dinner5555|525.015|525.0055|5dinner5over5limit55555|

55Scenario5outline:5No5reimbursement5for5alcohol

Given5I5spend5<cost>5on5<meal>,5including5<alcohol_cost>5for5alcohol

Then5I5should5receive5<amount>5for5<reason>

55Examples:

|5meal555555|55cost5|5alcohol_cost5|5amount5|5reason55555555555555555555555555555|

|5dinner5555|530.295|55.00555555555|524.9955|5dinner5under5limit5without5alcohol5|

|5dinner5555|529.255|54.00555555555|525.0055|5dinner5over5limit5without5alcohol55|

Do these examples describe the functionality more clearly? We can certainly see the effect of
each limit individually.

Do we need examples that show the addition of multiple meals? What about alcohol with
breakfast or lunch? Would those be treated the same as for dinner? Or might they result in

12 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



disciplinary action; we can’t tell from these examples.

How do you feel about the <reason> field? This is included solely for commentary. It identifies
the purpose of each example, and could be used by the step definition to better describe a
failure. Otherwise it’s not functional. If we wrote individual scenarios, the sceneario title would fill
this need. Is there a better way to handle this need?

What might we be missing?
When I receive a bug report, I like to write a test that illustrates the bug. This lets me verify that I
understand the conditions that exhibit the problem, and signals when the problem is fixed.

Scenario:5Bug5#24,5reported524Nov2009

55When5I5spend5$6.285for5breakfast55

55And5I5spend5$14.695for5lunch55

55And5I5spend5$30.205for5dinner,5including5$6.505for5alcohol

55Then5I5should5receive5$43.005in5reimbursement55

Often I will leave such a test in the suite. I really really hate it when I introduce the same defect
I’ve fixed before. In this case, I’m pretty sure that my final set of scenarios cover all of the
conditions that this bug-report scenario illustrates. But could there be an interaction between the
meal limits? Could there be a problem with adding up a combination of within-limit and over-limit
meal purchases, perhaps exacerbated by the calculation of sales tax on the alcohol?

On the other hand, if there are hundreds of these, they might slow the tests down considerably.
In that case, I would probably want to delete it, or at least move it to a separate suite that is run
less frequently.

13 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Using Data Values in Automated Tests
We would like each automated test to describe its intentions, to describe the responsibility it
tests. An important factor that affects the expressiveness of our tests is the way we select,
name, and expose or hide the data values we use.

Question Literal Values
When I examine my clients’ test code, I often see test steps like this:

logIn("jbfredbmuggs");

This step uses the string literal "jbfredbmuggs" . When I see literals in the code, my reaction is
to wonder what makes that specific value important to the code. So I begin asking questions.
And depending on the answers, I might suggest changing the code in some way. From the
context I can guess that "jbfredbmuggs"  is a user name, but I don’t know why this test is
logging in as this user.

My first question:

Why that value?

In this case: Why "jbfredbmuggs" ?

A common answer is that the test programmer needed to supply some value in order to log in,
and knew that the system already had an account for "jbfredbmuggs" . So that was the easiest
one to use.

I interpret this to mean that the only important characteristic of this value is that it names a user
for whom the system already has an account. More abstractly: This value is important because
it is a member of some category that matters to the test. It matters that the user is an existing
user. I test my interpretation by asking:

Would any member of the category work just as well in this test?

For this test, the question is: Would any existing user work just as well? I’m checking to see
whether there are any other important characteristics of this name. There are three possibilities
here:

Any existing user would work just as well. In this case, the important thing about our
data value is that it is a representative member of some category.
Some other existing users would work just as well, but some would not. In this case,
our data value has some other characteristic that matters to the test, but we haven’t yet

14 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



named the important characteristic. We will want to refine the category.
No other value would satisfy the purpose of the test. In this case, our data value is a
magic literal, a value that has a specific, unique meaning to the system we’re testing.

Representative Members
If the important characteristic of a literal value is that it is a representative of some category, I
ask a few more questions.

Does this category matter to the responsibility I’m testing?

That is,

I have a few choices about what to do with the value:

If the category matters to the responsibility we’re testing, extract the value into a variable,
name the variable to identify the category, and use the name in the test.
If the category doesn’t matter to the test, hide it inside a well-named helper method or
object.

The category is existing users, so I will name the constant EXISTING_USER . Now the step looks
like this:

logIn(EXISTING_USER);

This code expresses more clearly the intent of that step: Log in as an existing user.

I might go a step further. If our intention is to log in, we will of course have to log in as an
existing user. So maybe we can remove that information entirely from the test step:

logIn();

In this case, I let the login method select a reasonable default value.

Have we lost anything by removing EXISTING_USER  from the test code? Maybe. That depends
on the intent of the test. Two key questions here are:

Does the system have a responsibility to do something different for existing users than for
other users?

and:

Is the purpose of this test to test that responsibility?

15 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



If the test is otherwise written clearly, it will be apparent to us whether the test cares about the
prior existence of the user. If it isn’t obvious, we may find clues by reading nearby tests – other
tests in the same test class, or other scenarios in the same Cucumber feature.

Suppose a second test logs in as "phoebebbbbeebe" . And through the same question and
answer approach we refactor the login step in the second test to look like this:

logIn(NEW_USER);

We can now clearly see that one test logs in as a new user, and one as an existing user. The
two tests differ in this way. Does this difference matter to the tests?

Suppose these two tests are trying to test that the system responds differently when a new user
logs in than when an existing user logs in. When a new user logs in, the system must
immediately ask the user to supply a new password.

In this case, it matters to the test whether the user is a new user or an existing one. Each test
needs a member of a specific category.

Refining Categories
Sometimes we discover that a literal value represents a subset of a more general category.
Suppose J. Fred Muggs is not only a user with an account, he is a chimpanzee with an account.
And suppose the responsibility we are testing cares about the species of the user. Maybe we
present one kind of user interface for chimpanzees, and a different kind of user interface for
humans and other lesser primates. In that case, the variable name EXISTING_USER  would not
sufficiently convey the important distinction. We will need a name that conveys the distinction:

loginAs(A_CHIMPANZEE);

Before we settle on this name, we can ask a few other questions to find a name that says
everything that is important about the value and nothing that is unimportant. The first question is
one we have asked before, but now it becomes more specific:

Would any chimpanzee do?

We call this The Any Monkey Question.  If the answer is no, we search for a further distinction.
This may be a further subcategory, such as bonobo. Or we may need to introduce a separate
dimension, such as wild or in-captivity.

If the answer is that, yes, any monkey will do, we can probe in the other direction, to see
whether a more general category would suffice for our test. We can ask a few questions:

[1]

16 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Must it be a chimpanzee, specifically?

This can help us avoid using a category that is overly restrictive. Overly restrictive categories
can confuse readers by suggesting constraints that the responsibility does not care about.

What is a chimpanzee a kind of?

It’s a kind of ape, which is a kind of primate, which is a kind of mammal. Would those more
general categories suffice?

Magic Literals
Sometimes we choose a given literal value because the value has a specific, unique meaning to
the system we’re testing. Suppose, for example, we have a business rule that says:

Preferred customers receive a 10% discount on purchases over $1000.

This business rule would create numerous responsibilities for the system:

Apply a 10% discount to preferred customers’ purchases over $1000 dollars.
Do not apply the discount to non-preferred customers, even for purchases over $1000.
Do not apply the discount to purchases of $1000 or less, even for preferred customers.

Each of these responsibilities involves one or more specific data values. How might we
represent these values in a test? Here’s one way:

Feature:5Do5not5discount5purchases5of5$10005or5less

55Given5that5the5customer5is5a5preferred5customer

55When5the5customer5makes5a5purchase5of5$1000

55Then5the5system5does5not5apply5the5preferred5customer5discount

Feature:5Discount5preferred5customers'5purchases5over5$10005by510%

55Given5that5the5customer5is5a5preferred5customer

55When5the5customer5makes5a5purchase5of5$1100

55Then5the5system5applies5a5preferred5customer5discount5of5$110

What advantages and disadvantates do you see in putting these specific values directly into the
tests?

Some questions that I would ask: Can the reader understand what each magic literal means?
Can the reader easily trace these magic literals to the business rules that give rise to them?

Should we try to remove these literal values from the tests, and instead use meaningful names?
Let’s try it and see what we think.

17 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The first step is to find meaningful names. What does each value mean? Let’s call the 10% the
preferred customer discount, and the $1000 the preferred customer discount threshold. (You
may be able to think of better names.)

Now the tests look something like this:

Feature:5Do5not5discount5purchases5at5or5below5the5preferred5customer5threshold

55Given5that5the5customer5is5a5preferred5customer

55When5the5customer5makes5a5purchase5of5exactly5the5preferred5customer5threshold

55Then5the5system5does5not5apply5the5preferred5customer5discount

Feature:5Discount5preferred5customers'5purchases5that5exceed5the5threshold

55Given5that5the5customer5is5a5preferred5customer

55When5the5customer5makes5a5purchase5that5exceeds5the5threshold

55Then5the5system5applies5the5preferred5customer5discount

Is this an improvement over the original tests with the magic values? In this case, I don’t think
so. Given that the business rule states the magic literals explicitly, it is easier for readers to map
the test to the business rule if the test uses the literal values.

But suppose the business rule were stated this way:

Preferred customers receive a discount on purchases that exceed the preferred customer
discount threshold. The threshold and the amount of the discount are updated from time to
time, and their current values are stored in the Customer Loyalty Policies database.

Now the business rule does not state particular values, and we can see that the values may
change from time to time. In this case, I am more inclined to write the tests to use meaningful
names from the business domain instead of literal values.

Relationships and Literal Values
In addition to understanding the individual steps in a test, we also want to understand the
relationships among the steps.

Let’s take another look at one of our preferred customer discount tests:

Feature:5Discount5preferred5customers'5purchases5over5$10005by510%

55Given5that5the5customer5is5a5preferred5customer

55When5the5customer5makes5a5purchase5of5$1100

55Then5the5system5applies5a5preferred5customer5discount5of5$110

What do the numbers in this test have to do with each other? What does the $1100  value have
18 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



to do with this test? The important thing about that value is that it exceeds the threshold at
which the discount applies. That affects the next line, where we expect the system to apply the
discount. Is the meaning of the value apparent in the test code? I think so, but judge for
yourself.

What about the $110 ? What does that have to do with the rest of the feature? With a little
calculation, we can see that $110 is 10% of $1100. That is, it is the dollar amount of the
preferred customer discount for a purchase of $1100. Is that clear from the test? I wouldn’t say
that it’s apparent at a glance, but I think this is clear to a typical person who understand the
business rule.

For examples of magic literal values that are not only unclear, but which acutally obscure the
meanings of tests, see the dollar amounts in the early examples in “Incidental Details”
elsewhere in this handout.

For more about general idea of making relationships clear in test code, see “Tests as Examples
of System Responsibilities” elsewhere in this handout.

When Are Literal Values Okay?
In his “Refactoring with Ben Orenstein” video , Ben Orenstein says:

I never put a value other than 1 or 0 into the code without a name to it.

Though I’m tempted to give his strict rule a thorough tryout, I don’t usually go quite so far as
Ben. Sometimes I find that I’m okay with a literal value in the code.

The key for me is whether the literal value makes the meaning of the test clear, and whether the
test code makes the meaning of the literal value clear.

In some of the examples above, the literal values are actually clearer than the best abstract
names we can think of.

There is a danger here. It is very easy to conclude, when looking at test code that you yourself
have written, that of course the meanings of the literal values are clear in the code. Before you
conclude that a literal value communicates your intentions, consider showing your code to a few
colleagues and asking:

What makes this specific value important to the responsibility I’m testing?
How does this specific value relate to other parts of the test?

If their answers are not what you intended, or if it takes a reader more than 10 seconds to give
the right answer, your code is not yet clear enough. And if the meaning is unclear, refactor the
test code by extracting the values into variables or methods that make the meaning clear.

[2]

19 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



For more questions to assess the clarity of literal values, see “Tests as Examples of System
Responsibilities” elsewhere in this handout.

20 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Tests as Examples of System
Responsibilities
I like to think of system responsibilities as consisting of three parts:

A stimulus to which the system is obligated to respond
The results that the system is obligated to produce in response to the stimulus
The context in which the system is obligated to produce those results in response to that
stimulus.

I want automated test code to make clear what responsibility it is testing. To do that, the test
code will typically have to identify all three parts (context, stimulus, and results) and will have to
describe them directly in the code.

Further, I want it to be obvious to readers of the code which code establishes the context, which
code provides the stimulus, and which code evaluates the results.

Other Common Three-Part Models
Testers and test automators use a variety of terms and models to refer to these concepts. Here
are some of the popular ones.

Three A’s. William Wake offered the popular Three A’s model: Arrange, Act, Assert. This maps
nicely onto the parts of a responsibility. First the code arranges the context for the test. Then
the code acts on the system by sending some stimulus, such as by calling a method. Finally,
the code makes assertions about the results.

Gherkin. The Cucumber tool includes a simple testing language called Gherkin. With
Cucumber, each test is called a feature, and each feature is made up of one or more steps.
Each step typically begins with one of the three primary Gherkin keywords: Given, When, Then.
When used as intended by the Gherkin language designers, these keywords also map nicely
onto the parts of a responsibility. A Given step establishes context for the feature. A When step
simulates some user command or request to the system, and stimulates the system to respond.
A Then step evaluates a result produced by the system.

Parts of a Test. Testers sometimes think of tests in terms of Setup, Action, Expectations (or
Validation). We perform some setup steps to establish the context. Then we take some action
that we’re trying to test, which stimulates the system to respond. Then we validate the results
produced by the system by comparing them to our expectations.

21 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



A Three-Part Checklist
You can use any of these models as a checklist, to help determine whether a given test
describes all three parts of the responsibility it tests, and to help remember to describe all three
parts. Your checklist might look like this:

Does the test code clearly describe the relevant context for this responsibility?
Does the test code clearly describe the stimulus?
Does the test code clearly describe the desired results?

A Three-Part Test Code Template
Some of my clients use test code templates, like this:

@Test

public5void5test5{

5555//5Arrange

5555//5Act

5555//5Assert

}

Describe the Responsibility
I prefer to use terms that focus on the system’s responsibility instead of on the test. To my
mind, the arrange, act, assert terminology of the Three A’s focuses on what the test is doing.
The test arranges something. The test acts. The test asserts something. Similarly, the common
setup, action, expectations model focuses on the tester’s activities.

I find that Gherkin’s given, when, then scheme does a better job of directing my attention the
system’s responsibility. In Cucumber, the Gherkin keywords often allow me to write tests steps
that describe the system responsibility clearly and directly:

Given5that5"Fred"5reports5to5"Mr.5Spacely"

When5"Mr.5Spacely"5opens5his5direct5reports5org5chart

Then5the5system5displays5"Fred"5on5the5org5chart

22 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Describe Each Part of the Responsibility
As you write each test, ask yourself whether the test code expresses each of the essential parts
of the responsibility. If a part is missing, add it.

For examples of tests with and without each part, see “Essential Details” in this handout.

Highlight Relationships Among the Parts
The essence of a responsibility comes not only from its parts – the context, stimulus and results
– but also from the relationships among the parts. How does the context affect the way the
system must respond? How to the inputs influence the outputs?

The meaning of the test comes largely from these relationships. A well-written test highlights
these relationships and makes them clear and obvious to the reader.

We want to see not only the specific details that differentiate this responsibility from other
responsibilities, but also the relationships among these details.

For examples, see “Essential Details” in this handout.

What Interferes with Clarity
As we read test code, we want the essential details of the responsiblity not only to be present,
but also to be apparent. We would like to be able to tell at a glance what responsibility each test
is testing.

Even when all the parts are present, several factors can interfere with our ability to see them at
a glance.

Incidental details. Incidental details in the code compete with essential details for the reader’s
attention. Anything that competes with essence interferes with clarity.

We have plenty to say about incidental details elsewhere (and nearly everywhere) in this
handout.

Overloaded parts. Complex setups and verifications can make it harder to see the essence of
a test. Often an overloaded part is a sign that an important concept is lurking unnamed in the
code.

Do these these three setup steps work together to establish a single condition? Name the
condition. This makes the essence of the condition clearer and makes it easier to understand

23 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



the surrounding test code.

Do these three assertions work together to assess a single compound criterion? Name the
criterion. This makes the essence of the criterion clearer and makes it easier to understand the
surrounding test code.

Run-On Tests. Sometimes a test is really testing multiple responsibilities. See “Complex Tests”
(in this handout) for examples. When we bunch multiple responsibilities into a single test, we
make it harder to see the tests’ responsibilities at a glance. Further, the added bulk of the test
code makes it harder to understand the code even with study.

Assessing Clarity and Coherence
Assessing the Setup. Identify the test steps that establish the context for the test. As you read
these steps, note:

The conditions established by the steps.
The data values used to establish or describe the conditions.

For each condition established by the setup steps, ask:

What makes this specific condition important to the test?
How does this condition relate to the input values used in the stimulus steps?
How does this condition affect the expected results?

For each data value used in a setup step, ask:

What makes this specific value important to the test?
How does this value affect the expected results?
How does this value relate to the input values used in the stimulus steps?

Assessing the Stimulus. Identify the stimulus steps, the test steps that trigger the system to
respond. As you read the stimulus steps, note:

The input mechanisms used to trigger the system.
The input values sent to the system as part of the stimulus.

For each input mechanism used in a stimulus step, ask:

What makes this specific input mechanism important to the test?
How does this mechanism relate to the conditions established by the setup steps?
How does the use of this mechanism affect the expected results?

Are the answers clear in the code?

24 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



For each input value used in a stimulus step, ask:

What makes this specific input value important to the test?
How does this input value relate to the conditions established by the setup steps?
How does this input value affect the expected results?

Assessing the Results. Identify the tests steps that verify the results produced by the system.
As you read the results steps, note:

The assertions made by the results steps.

For each assertion, ask:

What result does this assertion verify?
What makes this specific result imporant to the test?
How is this result affected by the conditions established in the setup steps?
How is this result affected by the input values used in the stimulus steps?

Assessing Code Clarity. These final questions may be the most important questions of all:

Are the answers to these questions obvious in the code?
How do you know?

25 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Essential Details
We discovered in our discussion of incidental details that it’s easy to become distracted by them
and not notice that we’re missing essential details. It’s also possible to hide essential details
without that distraction.

Categories of Essential Details
As discussed in “Tests as Examples of System Responsibilities”, there are three parts to the
system responsibilities: conditions, stimulus, and results. All three of these parts generally have
essential details that we want to make explicit. We also want to make clear the relationships
between details in these three areas.

Explicit stimulus
If we were to write our scenario as

Scenario:5Reimbursement5for5travel5meals

55Given5the5maximum5reimbursement5for5breakfast5is5$5.00

55And5the5maximum5reimbursement5for5lunch5is5$15.00

55And5the5maximum5reimbursement5for5dinner5is5$25.00

55And5alcohol5is5not5reimbursable

55And5sales5tax5is56%

55And5sales5tax5on5alcohol5is5not5reimbursable

55When5I5spend5$51.175for5meals,5including5$6.505for5alcohol

55Then5I5should5receive5$43.005in5reimbursement

then there would be insufficient essential details describing the stimulus. We can’t determine if
$43.00 is the correct reimbursement without knowing the amounts for individual meals.

26 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Explicit results

Scenario:5Reimbursement5for5travel5meals

55Given5the5maximum5reimbursement5for5breakfast5is5$5.00

55And5the5maximum5reimbursement5for5lunch5is5$15.00

55And5the5maximum5reimbursement5for5dinner5is5$25.00

55And5alcohol5is5not5reimbursable

55And5sales5tax5is56%

55And5sales5tax5on5alcohol5is5not5reimbursable

55When5I5spend5$6.285for5breakfast55

55And5I5spend5$14.695for5lunch55

55And5I5spend5$30.205for5dinner,5including5$6.505for5alcohol

55Then5I5should5receive5the5correct5reimbursement55

This scenario does not specify what “correct reimbursement” means. It may be that, under the
covers in the step definition, the correct value is indeed specified. That’s not helpful when
looking at this test, though.

Explicit Conditions
When we specified our test as

Scenario:5Reimbursement5for5travel5meals

55When5I5spend5$6.285for5breakfast55

55And5I5spend5$14.695for5lunch55

55And5I5spend5$30.205for5dinner,5including5$6.505for5alcohol

55Then5I5should5receive5$43.005in5reimbursement55

then we failed to specify the conditions under which we would expect the answer $43.00 for
these expenditures.

27 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



We improved this by changing the scenario to

Scenario:5Reimbursement5for5travel5meals

55Given5the5maximum5reimbursement5for5breakfast5is5$5.00

55And5the5maximum5reimbursement5for5lunch5is5$15.00

55And5the5maximum5reimbursement5for5dinner5is5$25.00

55And5alcohol5is5not5reimbursable

55And5sales5tax5is56%

55And5sales5tax5on5alcohol5is5not5reimbursable

55When5I5spend5$6.285for5breakfast55

55And5I5spend5$14.695for5lunch55

55And5I5spend5$30.205for5dinner,5including5$6.505for5alcohol

55Then5I5should5receive5$43.005in5reimbursement55

In doing so, we defined our rules more clearly. A little math shows that the test is checking for
the correct answer. It does take some math, though. If one of these numbers was changed,
would we notice the problem? If this test did not pass, would we know where our code might be
wrong?

Explicit relationships
We would like the essential relationships between values to be plain upon inspection. If we
specify

Scenario:5Reimbursement5limit5for5breakfast

55Given5the5maximum5reimbursement5for5breakfast5is5$5.00

55When5I5spend5$6.285for5breakfast55

55Then5I5should5receive5$5.005in5reimbursement55

then the relationship between the reimbursement limit and the reimbursement is plainly visible.
We can intuit the reason for the expected value. Similarly, in

Scenario:5Reimbursement5limit5for5lunch

55Given5the5maximum5reimbursement5for5lunch5is5$15.00

55When5I5spend5$14.695for5lunch55

55Then5I5should5receive5$14.695in5reimbursement55

we quickly notice the relationship between the stimulus and result. Again, the can understand
the reasoning for the test by simple inspection, without any calculation.

28 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Implementation Details

Workflow details
Sometimes I see tests written as if they’re telling some remote programmer how to accomplish
the test.

Scenario:5Reimbursement5for5travel5meals

55Given5I5login5to5the5Expense5Report5system

55When5I5navigate5to5the5Enter5Expense5Page

55And5I5enter5"6.28"5for5"breakfast"5

55And5I5enter5"14.69"5for5"lunch"5

55And5I5enter5"30.20"5for5"dinner"5

55And5I5submit5the5form

55And5I5print5the5form

55And5I5take5the5form5to5the5client5and5get5it5signed

55And5I5photocopy5the5receipts

55And5I5fax5the5signed5form5and5photocopied5receipts5to5"800b555b1212"

55Then5I5should5receive5$43.005in5reimbursement5within535months

Tests written in this way are often called imperative scenarios because they tell you what to
do. Favor declarative scenarios that describe the system behavior. Not only do declarative
scenarios make better executable specifications, but they are easier to maintain. The precise
procedure for telling the system how much I spent for lunch might change in the future. It’s
better that this detail be implemented once, and called by every step definition referring to lunch
spending, than that it be repeated numerous times in multiple scenarios.

29 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



System details
Even more fragile are tests like the following:

Scenario:5Reimbursement5for5travel5meals

55Given5I5navigate5to5http://example.com/

55And5I5click5"//div/form//input[@id='login_name']"

55And5I5enter5"jbfredbmuggs"

55And5I5click5"//div/form//input[@id='password']"

55And5I5enter5"SuP3rS3kRiT"

55And5I5click5"//div/form//input[@type='submit'5and5@value='Login']"

55And5I5navigate5to5http://example.com/expense_report

55And5I5click5"//div/form//input[@name='description']"

55And5I5enter5"breakfast"

55And5I5click5"//div/form//input[@name='amount']"

55And5I5enter5"6.28"

55And5I5click5"//div/form//input[@type='submit'5and5@value='next']"

55And5I5click5"//div/form//input[@name='description']"

55And5I5enter5"lunch"

55And5I5click5"//div/form//input[@name='amount']"

55And5I5enter5"14.69"

55And5I5click5"//div/form//input[@type='submit'5and5@value='next']"

55And5I5click5"//div/form//input[@name='description']"

55And5I5enter5"dinner"

55And5I5click5"//div/form//input[@name='amount']"

55And5I5enter5"30.20"

55And5I5click5"//div/form//input[@type='submit'5and5@value='submit']"

55Then5I5should5receive5$43.005in5reimbursement5within535months

This test is littered with references to the specific implementation, in this case, the document
structure of a web page. It will only take the slightest change to the page, e.g., a small search
form added to the top of the div , to break all of these XPATH expressions. Again, details such
as this should be isolated to one place, and therefore made easy to change in the future. These
implementation details also hide the intent of the test.

30 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Driver details
I couldn’t think of a good example of this problem using Cucumber, so I wrote a JUnit example,
instead.

public5static5void5testReimbursementForTravelMeals()5{

55selenium.findElement(By.id("login_name")).sendKeys("jbfredbmuggs");

55selenium.findElement(By.id("password")).sendKeys("SuP3rS3kRiT");

55selenium.findElement(By.xpath("//div/form//input[@type='submit'5and5@value='Login']").click();

55selenium.findElement(By.name("description").sendKeys("breakfast");

55selenium.findElement(By.name("amount").sendKeys("6.28");

55selenium.findElement(By.name("description").sendKeys("lunch");

55selenium.findElement(By.name("amount").sendKeys("14.69");

55selenium.findElement(By.name("description").sendKeys("dinner");

55selenium.findElement(By.name("amount").sendKeys("30.20");

55selenium.findElement(By.xpath("//div/form//input[@type='submit'5and5@value='submit']").click();

55assertEquals("43.00",5selenium.findElement(By.xpath("//div[@class='reimbursement']//span[@class='amount']");

}

Again we find our test crowded with incidental details that obscure the essential ones. In this
case, the incidental details are those of the driver whe’re using to connect our test to the system
we’re testing. It’s better to keep the expression of the test driver-agnostic. Not only are we not
testing the driver, itself, but we may want to change it for a different driver in the future.

31 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Context setup
When we specify the ‘Given’ conditions that are assumed by the following scenarios (or later in
the same scenario), we could be

Stating conditions embodied in the system, either by code or configuration
Verifying conditions embodied in the system, either by code or configuration
Setting conditions within the system, either dynamically or by configuration.

For example:

Background:

55Given5the5maximum5reimbursement5for5breakfast5is5$5.00

55And5the5maximum5reimbursement5for5lunch5is5$15.00

55And5the5maximum5reimbursement5for5dinner5is5$25.00

55And5alcohol5is5not5reimbursable

55And5sales5tax5is56%

55And5sales5tax5on5alcohol5is5not5reimbursable

Stating conditions
If the background merely states conditions that we know to be true, we leave ourselves open to
future problems. Sure, the maximum reinbursement for breakfast may be $5.00 now, but the
penny-pinching middleman is likely to reduce it to $3.00 in the future. If this happens, our tests
will start giving us incorrect results. I find this far too fragile to live with.

On the other hand, we might think that alcohol and associated sales tax is unlikely to become
reimbursable. This business logic may be embedded in the code without a way to configure or
verify it. In that case, having the background merely state our assumptions about the system
may be reasonable for documentation purposes, even though it’s not functional.

Then(/^alcohol5is5not5reimbursable$/)5do

55#5This5policy5is5unlikely5to5change

end

32 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Verifying conditions
If a pre-condition is not settable, or it’s not convenient to set it, we may still want to verify that
our assumptions are true.

Then(/^sales5tax5is5(\d+)%$/)5do5|tax_rate|

55expect(page.tax_rate).to5eq5tax_rate

end

This alerts us when, in the future, the tax rate changes. The error will tell us that the tax rate
doesn’t match our expectation, rather than leaving us puzzled about how we broke the
functionality for calculating reimbursements.

Setting conditions
It’s preferable if we can control our context.

Then(/^sales5tax5is5(\d+)%$/)5do5|tax_rate|

55application.configure(:tax_rate=>tax_rate)

end

This way we can test the logic, without being concerned about the values being used in
production.

One of these things is not like the other
The 6% sales tax is not “corporate policy” like the rest are. I have included it in the Background
because it makes the calculations more understandable. I’m a little uncomfortable with this,
though. I think that it not fitting with with the other items and the fact that the tests calculate the
alcohol sales tax both contribute to this uneasiness.

In situations like this, sometimes I live with the discomfort until I find a better solution.

33 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Complex Tests

Run-On Test
A client once complained to us, “But all of your examples are so small. Our tests are more
complex than that. Why don’t you show an example of a complex test?” We asked for an
example, but never got to see it. I suspect it was something functionally similar to this:

Scenario:5Check5the5ability5to5control5file5access

55Given5I5login5as5an5administrator

55And5I5set5the5file5access5to5"read/write"5for5"jbfredbmuggs"

55And5I5logout

55When5"jbfredbmuggs"5logs5in

55Then5"jbfredbmuggs"5can5read5the5file

55And5"jbfredbmuggs"5can5write5the5file

55And5"jbfredbmuggs"5logs5out

55And5I5login5as5an5administrator

55And5I5set5the5file5access5to5"read_only"5for5"jbfredbmuggs"

55And5I5logout

55When5"jbfredbmuggs"5logs5in

55Then5"jbfredbmuggs"5can5read5the5file

55And5"jbfredbmuggs"5cannot5write5the5file

55And5"jbfredbmuggs"5logs5out

55And5I5login5as5an5administrator

55And5I5set5the5file5access5to5"deny"5for5"jbfredbmuggs"

55And5I5logout

55When5"jbfredbmuggs"5logs5in

55Then5"jbfredbmuggs"5cannot5read5the5file

55And5"jbfredbmuggs"5cannot5write5the5file

55And5"jbfredbmuggs"5logs5out

This is called a Run-On Test, similar to a run-on sentence that your English teacher might have
hated. It does one thing and then another and then another and when it fails, you have to
discern what about it failed. Also, when it fails, you don’t have any information about later parts
of the scenario, as they’re “blocked” by the failure.

34 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



By breaking these into separate tests, we get clearer and more information in the case of a
failure.

Scenario:5Check5read/write5access

55When5the5file5access5is5set5to5"read/write"5for5"jbfredbmuggs"

55Then5"jbfredbmuggs"5can5read5the5file

55And5"jbfredbmuggs"5can5write5the5file

Scenario:5Check5readbonly5access

55When5the5file5access5is5set5to5"read_only"5for5"jbfredbmuggs"

55Then5"jbfredbmuggs"5can5read5the5file

55And5"jbfredbmuggs"5cannot5write5the5file

Scenario:5Check5denied5access

55When5the5file5access5is5set5to5"deny"5for5"jbfredbmuggs"

55Then5"jbfredbmuggs"5cannot5read5the5file

55And5"jbfredbmuggs"5cannot5write5the5file

Sidebar: End to end testing

What does “End to end” testing mean to you? I’ve come across two main interpretations.

One is is a series of interactions with the system. Often this includes everything the user might
do from logging on to logging off, and everything in between. Sometimes, as in our Run-On
Test example, above, there are multiple users involved. This sort of test simulates real
interaction with the system.

The other is a test that exercises system code from one external boundary to another. This
might be from the GUI down to the database. This sort of test makes sure that the layers of
subsystems work properly in concert.

35 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Writing Maintainable Automated Acceptance
Tests
Dale Emery

Test Automation is Software Development
Test automation is software development . This principle implies that much of what we know
about writing software also applies to test automation. And some of the things we know may not
be apparent to people with little or no experience writing software.

Much of the cost of software development is maintenance—changing the software after it is
written. This single fact accounts for much of the difference between successful and
unsuccessful test automation efforts. I’ve talked to people in many organizations that attempted
test automation only to abandon the effort within a few months. When I ask what led them to
abandon test automation, the most common answer is that the tests quickly became brittle and
too costly to maintain. The slightest change in the implementation of the system—for example,
renaming a button—breaks swarms of tests, and fixing the tests is too time consuming.

But some organizations succeed with test automation. Don’t they experience maintenance
costs, too? Of course they do. An important difference is that where unsuccessful organizations
are surprised by the maintenance costs, successful organizations expect them. The difference
between success and failure is not the maintenance costs per se, but whether the organization
expects them. Successful organizations understand that test automation is software
development, that it involves significant maintenance costs, and that they can and must make
deliberate, vigilant effort to keep maintenance costs low.

The need to change tests comes from two directions: changes in requirements and changes in
the system’s implementation. Either kind of change can break any number of automated tests. If
the tests become out of sync with either the requirements or the implementation, people stop
running the tests or stop trusting the results. To get the tests back in sync, we must change the
tests to adapt to the new requirements or the new implementation.

If we can’t stop requirements and implementations from changing, the only way to keep the
maintenance cost of tests low is to make the tests adaptable to those kinds of changes.

Developers have learned—often through painful experience—that two key factors make code
difficult to change: Incidental details and duplication. You don’t want to learn this the hard way.

[3]

[4]

36 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Acceptance Tests and System Responsibilities
An acceptance test investigates a system to determine whether it correctly implements a given
responsibility. The essence of an acceptance test is the responsibility it investigates, regardless
of the technology used to implement the test.

Suppose we are testing a system’s account creation feature. The create  command creates a
new account, given a user name and a password. One of the account creation feature’s
responsibilities is to validate passwords. That is, it must accept valid passwords and reject
invalid ones. To be valid, a password must be from 6 to 16 characters long and include at least
one letter, at least one digit, and at least one punctuation character. If the submitted password
is valid, the create  command creates the account and reports Account Created. If the
password is invalid, the create  command refrains from creating the account and reports
Invalid Password.

That’s the essence of the responsibility. No matter how the system is implemented—whether as
a web app, a GUI app, a set of commands to be executed on the command line, or a guy
named Bruce wielding a huge pair of scissors to snip off the fingers of anyone who submits an
invalid password—the system must implement that responsibility.

Incidental Details
Listing 1 shows a poorly written automated acceptance test  for the create  command’s
password validation responsibility.

[5]

37 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Listing 1: A poorly written acceptance test

**5Test5Cases5**

The5create5command5validates5passwords

5555${status}=55Run55ruby5app/cli.rb5create5fred51234!@$^

5555Should5Be5Equal55${status}55Invalid5Password

5555${status}=55Run55ruby5app/cli.rb5create5fred5abcd!@$^

5555Should5Be5Equal55${status}55Invalid5Password

5555${status}=55Run55ruby5app/cli.rb5create5fred5abcd1234

5555Should5Be5Equal55${status}55Invalid5Password

5555${status}=55Run55ruby5app/cli.rb5create5fred5!2c45

5555Should5Be5Equal55${status}55Invalid5Password

5555${status}=55Run55ruby5app/cli.rb5create5fred5!2c456

5555Should5Be5Equal55${status}55Account5Created

5555${status}=55Run55ruby5app/cli.rb5create5fred5!2c4567890123456

5555Should5Be5Equal55${status}55Account5Created

5555${status}=55Run55ruby5app/cli.rb5create5fred5!2c45678901234567

5555Should5Be5Equal55${status}55Invalid5Password

This test has numerous problems, the most obvious being that it is hard to understand. We can
see from the second line—the name of the test—that it tests the create  command’s validation
responsibility. But it’s hard to make sense of the details of the test among the flurry of words
and “syntax junk” such as dollar signs and braces.

With a little study we can pick out the passwords—such as 1234!@$^ . And with a little more
study we might notice that some passwords lead to a status of Invalid Password and others
lead to Account Created. On the other hand, we might just as easily not notice that, because
the connection between passwords and statuses is buried among the noise of the test. What do
dollar signs, braces, and the words Run , Ruby , and fred  have to do with passwords and
validation? Nothing. Those are all incidental details, details required only because of the way
we’ve chosen to implement the system and the test.

Incidental details destroy maintainability. Suppose our security analysts remind us that six-
character passwords are inherently insecure. So we change one of the key elements of the
responsibility, increasing the minimum length of a password from six to ten. Given this change
in requirements, what lines of this test would have to change, and how? It isn’t easy to see at a
glance.

Let’s consider a more challenging requirements change. We want system administrators to be
able to configure the minimum and maximum password length for each instance of the system.
Now which lines of the test would have to change? Again, the answer isn’t easy to see at a
glance.

38 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



That’s because the test does not clearly express the responsibility it is testing. When we cannot
see the essence of a test, it’s more difficult and costly to understand how to change the test
when the system’s responsibilities change. Incidental details increase maintenance costs.

So the first step toward improving maintainability is to hide the incidental details, allowing us to
more easily see the essence of the test. In this test, most of the details are about how to invoke
the create  command. This system is implemented as a set of command line commands,
written in the Ruby programming language. The first highlighted line in the test tells Robot
Framework to run the computer’s Ruby interpreter, telling it to run the app/cli.rb  file (the
system we’re testing), and telling it in turn to run its create  command with the user name
fred  and the password 1234!@$^ . And at the end of it all, Robot Framework stuffs the create

command’s output in a variable called ${status} . Whew!

The highlighted second line is easier to understand. It compares the returned status to the
required status Invalid5Password . But it’s awkwardly worded and includes distracting syntax
junk, a form of incidental detail.

Robot Framework allows us to extract details into keywords, which act like subroutines for our
tests. A keyword defines how to execute a step in an automated test.

So let’s create a keyword to hide some of the incidental details.

One useful approach is to ask yourself: How would I write that first step if I knew nothing about
the system’s implementation? Even if I knew nothing about the system’s implementation, I know
it has the responsibility to create  accounts — that’s the feature we’re testing, after all. So I
know it will offer the user some way to create an account. Create Account, then, is an essential
element of the system’s responsibilities. I also know (from other requirements) that in order to
create an account, the user must submit a user name and a password.

Given all of that, I might write the test step like this:

Create5Account5fred51234!@$^

I still have some concerns with this test step , but I’ll deal with those later.[6]

39 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Now let’s look at the second highlighted step. It seems to be verifying that the create
command returned the appropriate status: Invalid Password. How might I rewrite this step if I
knew nothing about the system’s implementation? Here’s one possibility:

Status5Should5Be5Invalid5Password

So together, those two steps now look like this:

Create5Account5fred51234!@$^

Status5Should5Be5Invalid5Password

That’s much clearer. Without all of the incidental details, it’s easier to spot the connection
between the two lines: The system must tells us that the given password is invalid.

Now if we try to run the test, it will fail, because Robot Framework doesn’t know the meaning of
Create5Account  or Status5Should5Be . We haven’t defined those keywords yet. Let’s do that

now:

Listing 2: Keywords to create an account and check the status

**5Keywords5**

Create5Account5${user_name}5${password}

5555${status}=55Run55ruby5app/cli.rb5create5${user_name}5${password}

5555Set5Test5Variable555${status}

Status5Should5Be5${required_status}

5555Should5Be5Equal55${status}55${required_status}

The highlighted line introduces a new keyword called Create5Account , and describes it as
taking two pieces of information as input – a user name and a password. The next two lines tell
Robot Framework how to execute the keyword. Notice that the first indented line looks a lot like
the first highlighted line of our original test. This is where we hid the incidental details.

40 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



You may also notice that we introduced yet more syntax junk, yet more dollar signs and braces.
How is this an improvement? The benefit is this: By extracting all of the incidental details out of
the test steps and into the keyword, we’ve cleaned up our test steps, making them easier to
understand. The benefit becomes more apparent if we rewrite all of our test steps using the new
keywords:

Listing 3: The test rewritten to remove incidental details

**5Test5Cases5**

The5create5command5validates5passwords

5555Create5Account5fred51234!@$^

5555Status5Should5Be5Invalid5Password

5555Create5Account5fred5abcd!@$^

5555Status5Should5Be5Invalid5Password

5555Create5Account5fred5abcd1234

5555Status5Should5Be5Invalid5Password

5555Create5Account5fred5!2c45

5555Status5Should5Be5Invalid5Password

5555Create5Account5fred5!2c456

5555Status5Should5Be5Account5Created

5555Create5Account5fred5!2c4567890123456

5555Status5Should5Be5Account5Created

5555Create5Account5fred5!2c45678901234567

5555Status5Should5Be5Invalid5Password

Now our test reads much more cleanly. At the expense of a little bit of syntax awkwardness in
the keyword definition, we’ve gained a lot of clarity in the test. It’s a tradeoff well worth making.

Duplication
So far we’ve improved the test noticeably by extracting incidental details into reusable
keywords. But there are still problems. One, mentioned earlier, is the troublesome fred  in
every other step. A bigger problem is duplication. Every pair of lines submits an interesting
password and verifies that the system emits the appropriate status message. From one pair to
the next, only two things change: the password and the desired status. Everything else stays
the same. Everything else is duplicated from one pair to the next.

Duplication destroys maintainability. Suppose our usability analysts remind us that none of our
other systems ask users to create an account. Instead, they ask users to register. So the
language of this system – create account – is inconsistent with others. The usability analysts
insist, and now we need to change our system’s terminology.

41 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



One possibility is to simply change the name of the command line command from create to
register, and leave our tests the way they are. If we were to do that, then every time we tried to
talk about the acceptance tests with the business folks, we would have to translate between the
language of the tests and the language of the business. That path leads to confusion.

To keep the language consistent, it would be better to change the tests to use the common
terminology. This is where duplication rears its ugly head. We have to scan all of our tests,
identify every mention of create, and change it to register. With our revised test, that’s not
especially onerous. We mention create only ten times: eight  times in the test and twice in the
keywords. But imagine if we had hundreds of tests . Duplication increases maintenance costs.

Duplication often signals that some important concept lurks unexpressed in the tests. That’s
especially true when we duplicate not just single steps, but sequences of steps. In our test, we
duplicate pairs of steps – one step in each pair creates an account with a significant password,
and the next checks to see whether the system reported the correct status.

Consider the first two steps in Listing 3. What do they do? What is the essence of those two
steps? Taken together, they verify that the create  command rejects the password 1234!@$^ .
How about steps nine and ten? Those two steps verify that the create  command accepts the
password !2c456 . Accept and reject. Those concepts are the essence of the responsibility
we’re testing, yet they’re cowering in the shadows of our test steps.

Let’s make the concepts explicit by creating two new keywords :

Listing 4: Keywords for accepting and rejecting passwords

**5Keywords5**

Accepts5Password5${valid_password}

5555Create5Account5arbitraryUserName5${valid_password}

5555Status5Should5Be5Account5Created

Rejects5Password5${invalid_password}

5555Create5Account5arbitraryUserName5${invalid_password}

5555Status5Should5Be5Invalid5Password

These keywords not only allow us to rewrite our test, they also define the meaning of accepting
and rejecting passwords. To accept a password means that when we try to create an account
with the password, the system reports that the account has been created . To reject a
password means that when we try to create an account with that password, the system reports
that the password is invalid.

[7]

[8]

[9]

[10]

42 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Now we can rewrite our test to reduce the duplication, and also to directly express the essential
responsibility of accepting and rejecting passwords :

Listing 5: Test rewritten to reduce duplication

**5Test5Cases5**

The5create5command5validates5passwords

5555Rejects5Password51234!@$^

5555Rejects5Password5abcd!@$^

5555Rejects5Password5abcd1234

5555Rejects5Password5!2c45

5555Accepts5Password5!2c456

5555Accepts5Password5!2c4567890123456

5555Rejects5Password5!2c45678901234567

By analyzing duplication in the test, we identified two essential system concepts – the system
accepts valid passwords and rejects invalid ones. By defining keywords, we named those
concepts. Then we rewrote the test to refer to the concepts by name. By putting names to those
concepts, and using the names throughout the test, we made the test more understandable and
thus more maintainable.

Naming the Essence
Now that the test more clearly talk about accepting and rejecting passwords, one last bit of
unclarity becomes more apparent. As we look at each invalid password, it isn’t immediately
obvious what’s invalid about it. And what about the valid passwords? Why do we test two
passwords? And why those two? What’s so special about them? With time you could figure out
the answers to those questions. But here’s a key point: Any time spent puzzling out the
meaning and significance of a test is maintenance cost. This may seem like a trivial cost, but
multiply that by however many tests you need to change the next time someone changes a
requirement. As many of my clients have discovered, these “trivial” maintenance costs add up,
and they kill test automation efforts.

As I designed the test, I chose each password for a specific purpose. The essence of each
password is that it tells me something specific that I want to know about the system. Take the
password 1234!@$^  as an example. I chose this password because it is missing one of the
required character types: it contains no letters. The essence of this password is that it lacks
letters.

[11]

43 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



I’d like to give that essence a name. Robot Framework offers a feature to do that: variables. I
can create a variable, give it an expressive name, and assign it a value that embodies that
name. Here’s how to create a variable:

**5Variables5**

${aPasswordWithNoLetters}5551234!@$^

Now I can use that variable in my test. In the interest of space, let’s assume that I’ve created
variables for all of the passwords, each named to express its essence, its significance in the
test :

Listing 6: Test rewritten to name significant values

**5Test5Cases5**

The5create5command5validates5passwords

5555Rejects5Password5${aPasswordWithNoLetters}

5555Rejects5Password5${aPasswordWithNoDigits}

5555Rejects5Password5${aPasswordWithNoPunctuation}

5555Rejects5Password5${aTooShortPassword}

5555Accepts5Password5${aMinimumLengthPassword}

5555Accepts5Password5${aMaximumLengthPassword}

5555Rejects5Password5${aTooLongPassword}

Now the test is nearly as clear as we can make it. I’ll take one more step, and break the test into
multiple tests, each focused on a particular element of password validation:

Listing 7: Test rewritten to name significant values

**5Test5Cases5**

Rejects5passwords5that5omit5required5character5types

5555Rejects5Password5555${aPasswordWithNoLetters}

5555Rejects5Password5555${aPasswordWithNoDigits}

5555Rejects5Password5555${aPasswordWithNoPunctuation}

Rejects5passwords5with5bad5lengths

5555Rejects5Password5555${aTooShortPassword}

5555Rejects5Password5555${aTooLongPassword}

Accepts5minimum5and5maximum5length5passwords

5555Accepts5Password5555${aMinimumLengthPassword}

5555Accepts5Password5555${aMaximumLengthPassword}

[12]

44 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Now when I read these tests, I can understand at a glance the meaning and significance of
each test and each step. Each important requirements concept is expressed clearly, and
expressed once.

Now suppose we change the requirements for minimum and maximum password length.
Because each requirements concept is expressed clearly in the tests, I can quickly identify
which tests would have to change. And because each concept is defined once—and given a
name—I can quickly change the tests.

Putting the Tests to the Test: A Major
Implementation Change
So all of our work has made the tests more adaptable to requirements changes. But how about
implementation changes? To find out, let’s change a few implementation details of the system
and see how our tests fare. By “a few implementation details,” I mean let’s rewrite entire system
as a web app. Now, instead of typing the create  command on the command line, users visit
the account creation web page, type the user name and password into text fields on a web
form, and click the Create Account button. And the system, instead of printing the status to the
command line, forwards the user to a web page that displays the status.

The big question: How would our tests have to change?

Remember that earlier we hid many incidental details inside keywords – Create5Account  and
Status5Should5Be . Those keywords still contain the arcane steps to issue commands on the

command line. So clearly those keywords will have to change. Let’s rewrite those keywords to
invoke the web app instead of the command line app: :

Listing 8: Rewriting keywords to invoke the new web app

Create5Account5${username}5${password}

5555Go5To5555http://localhost:4567/create

5555Input5Text5555username5555${username}

5555Input5Text5555password5555${password}

5555Submit5Form

Status5Should5Be5${required_status}

5555${status}=5555555555Get5Text5555status

5555Should5Be5Equal55555${required_status}55${status}

Okay, so we’ve changed the keywords that directly interact with the system. And we’ve added
another eleven lines of test code as described in the footnote. What’s next? What else do we
have to change?

[13]

45 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Nothing. We’re done.

We’ve changed a few lines of test code, and our tests now run just fine against a new
implementation of the system using entirely changed technology.

Meanwhile, Back in the Real World
In the real world, you will likely have more work to do to respond to such a major
implementation change. For example, you will have to change more than two keywords. But if
you’ve created low-level keywords that isolate the rest of your test code from the details of how
to interact with the system, you will have to change only those low-level keywords. The tests
themselves continue to work, unchanged.

And real world implementation changes may require more radical changes in the tools you use
to run the tests.

But even when that’s true, you can still use modern open source testing tools  to remove
duplication from your tests, and to write tests that clearly and directly express the essence of
the system responsibilities they are testing.

The bottom line is this: If you write automated tests so that they express system responsibilities
clearly and directly, and if you remove duplication, you will significantly reduce the maintenance
costs that arise from both changes in requirements and changes in system implementation.
That could mean the difference between successful test automation and failure.

[14]

46 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Four Layers in Automated Tests
Dale Emery

I’ve known for a while that when I automate tests, layers emerge in the automation. Each chunk
of automation code relies on lower-level chunks. In Robot Framework , for example, tests
invoke “keywords” that themselves invoke lower-level keywords.

The layering per se wasn’t a surprise, because automated tests are software, and software
tends to organize into layers. But lately I’ve noticed a pattern. The layers in my automated tests
center around four themes:

Test intentions
System responsibilities
Essential system interface
System implementation interface

Test intentions
Test names and suite names are the top layer in my automation. If I’ve named each test and
suite well, the names express my test intentions. Reading through the test names, and seeing
how they’re organized into suites, will give useful information about what I tested and why.

For example, in my article on “Writing Maintainable Automated Acceptance Tests”  I was
writing tests for a system’s account creation feature, and specifically for the account creation’s
responsibility to validate passwords. I ended up with these test names (see Listing 7):

Rejects passwords that omit required character types
Rejects passwords with bad lengths
Accepts minimum and maximum length passwords

In an excellent video followup  to my article, Bob Martin organized his tests differently, using
Fitnesse . He grouped tests into two well-named suites, “Valid passwords” and “Invalid
passwords.” Each suite includes a number of relevant example passwords, each described with
a comment that expresses what makes the example interesting.

Every test tool that I’ve used offers at least one excellent way to express the intentions of each
test. However expressed, those intentions become the top layer of my automated tests.

[3]

[15]

[16]

[17]

[18]

47 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



System responsibilities
A core reason for testing is to learn whether the system meets its responsibilities. As I refine my
automation, refactoring it to express my intentions with precision, I end up naming specific
system responsibilities directly.

In my article, I’m testing a specific pair of responsibilities: The account creation command must
accept valid passwords and reject invalid ones. As I refactored the duplication out of my initial
awkward tests, these responsibilities emerged clearly, expressed in the names of two new
keywords: Accepts Password and Rejects Password. Listing 7 shows how my top-level tests
build on these two keywords.

Essential system interface
By system interface, I mean the set of messages that the system sends and receives, whether
initiated by users (e.g. commands sent to the system) or by the system (e.g. notifications sent to
users).

By essential I mean independent of the technology used to implement the system. For example,
the account creation feature must offer some way for a user to command the system to create
an account, and it must include some way for the system to notify the user of the result of the
command. This is true regardless of whether the system is implemented as a command line
app, a web app, or a GUI app.

As I write and refine automated tests, I end up naming each of these essential messages
somewhere in my code. In my article, Listing 2 defines two keywords. “Create Account” clearly
identifies one message in the essential system interface. Though the other keyword, “Status
Should Be,” is slightly less clear, it still suggests that the system emits a status in response to a
command to create an account. (Perhaps there’s a better name that I haven’t thought of yet.)
Listing 4 shows how the higher-level system responsibility keywords build upon these essential
system interface keywords.

System implementation interface
The bottom layer (from the point of view of automating tests) is the system implementation
interface. This is the interface through which our tests interact most directly with the system.
Sometimes this interaction is direct, e.g. when Java code in our low-level test fixtures invoke
Java methods in the system under test. Other times the interaction is indirect, through an
intermediary tool, e.g. when we use Selenium  to interact with a web app or FEST-Swing  to
interact with a Java Swing app.

[13] [19]

48 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



In my article, I tested two different implementations of the account creation feature. The first
was a command line application, which the tests invoked through the “Run” keyword, an
intermediary built into Robot Framework. Listing 2 shows how the Create Account keyword
builds on top of the Run keyword (though you’ll have to parse through the syntax junk to find it).

The second implementation was a web app, which the tests invoked through Robot
Framework’s Selenium Library  an intermediary which itself interacts through Selenium, yet
another intermediary. Listing 8 shows how the revised Create Account keyword builds on
various keywords in the Selenium Library.

Translating Between Layers
Each chunk of test automation code translates an idea from one layer to the next lower layer.
Listing 7 shows test ideas invoking system responsibilities. Listing 4 shows responsibilities
invoking messages in the essential system interface. Listings 2 and 8 show how the essential
system interface invokes two different system implementation interfaces.

Each of the acceptance test tools I use allows you to build layers like this. In FitNesse, top-level
tests expressed in test tables may invoke “scenarios,” which are themselves written in FitNesse
tables. And scenarios may invoke lower-level scenarios. In Cucumber  top-level “scenarios”
invoke “test steps," which may themselves invoke lower-level test steps. In Twist  “test
scenarios” invoke lower-level “concepts” and “contexts.” Each tool offers ways to build higher
layers on top of lower layers, which build upon yet lower layers, until we reach the layer that
interacts directly with the system we’re testing.

In the examples in my article, I chose to write all of my code in Robot Framework’s keyword-
based test language. I defined each keyword entirely in terms of lower-level keywords. I could
have chosen otherwise. At any layer, I could have translated from the keyword-based language
to a more general purpose programming language such as Java, Ruby, or Python. The other
tools I use offer a similar choice.

But I, like many users, find these tools’ test languages easier for non-technical people to
understand, and sufficiently flexible to allow users to write tests in a variety of ways. In general,
I want as many of these layers as possible to be meaningful not just to technical people, but to
anyone who has knowledge of the application domain. So I like to stay with the tool’s test
language for all of these layers, switching to a general purpose programming language only at
the lowest layer, and then only when the system’s implementation interface forces me to.

[20]

[21]

[22]

49 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



A Lens, Not a Straightjacket
When I write automated tests for more complex applications, there are often more layers than
these. Yet these four jump out at me, perhaps because each represents a layer of meaning that
I always care about. Every automated test suite involves test ideas, system responsibilities, the
essential system interface, and the system’s implementation interface. Though other layers
arise, I haven’t yet identified additional layers that are so universally meaningful to me.

These layers were a discovery for me. They offer an interesting way to look at my test code to
see whether I’ve expressed important ideas directly and clearly. I don’t see them as a standard
to apply, or a procrustean template to wedge my tests into. They are a useful lens.

50 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



What Do You Want From Tests?
Dale Emery

Automated tests are software. At first glance, this seems like a non-blinding non-flash of non-
insight. But I’m learning a lot about testing by applying this non-insight mindfully.

One thing I’m learning is how often I forget that automated tests are software. When I’m writing
tests, I often neglect to apply all of the principles help me to write software well. What if I were
to apply some of those principles mindfully?

A key principle is that we write software in order to serve some specific set of needs for
some specific set of people. When I’m trying to understand what software to write, I apply this
principle in the form of a few questions: Whose needs will the software serve? What needs will
trigger those people to interact with the software? What roles will the software play in satisfying
those needs?

Let’s apply this principle to the tests we write: Whose needs will these tests serve? What
needs would trigger those people to interact with the tests? What roles will the tests play
in satisfying those needs?

These days, I write software mostly for my own needs. And mostly I write the software alone.
So the “whose needs” question is an easy one: When I write tests, I’m writing them mostly for
me, for my own needs.

More enlightening for me — as a solo software developer writing tests solely for my own needs
— are other questions. What needs trigger me to interact with the tests, either by running them
or by reading test code? What roles do the tests play in satisfying those needs? Here’s a partial
list of answers:

I want to know whether my software is ready to deliver.

I want test code to help me understand which parts of the system are tested and
which are not.

I want to know whether there are defects in the software I’m writing.

I want tests to expose defects.

I want to know how to correct defects.

I want tests to direct me to the defective part of the software.

[3]

51 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



I want to understand the meaning of the test results.

I want each test’s code to indicate clearly how the test stimulates the software, and in
what conditions.

I want test reports to describe the test stimulus, the relevant test conditions, and the
software’s response.

When I’m adding a feature, I want to know when I’m done.

I want tests to tell me which of the feature’s responsibilities the software fulfills, and
which it does not.

When I’m editing software, I want to know whether my edits are having unintended effects.

I want tests to detect changes in the behavior of the surrounding software.

When I’m preparing to edit software, I want to know what the existing code does, so that I don’t
inadvertently break it.

I want test code to describe clearly what the existing software does.

That’s a partial list needs for a single stakeholder. I’m sure you can think of additional needs
that you have when you run tests or read test code, and additional ways that you want tests to
help you satisfy those needs. And if we were to consider other people who might interact with
our tests, we would discover even more needs. And then there are all of the people who do not
interact with the tests and yet are affected by them.

That’s a lot of stakeholders, and a lot of needs. I’m more likely to satisfy all of these people’s
needs (including my own) when I’m aware of what the needs are. And I’m more likely to be
aware of the needs when I ask questions like the ones I’ve used here. And I’m more likely to
ask these questions when I remember that tests are software.

What do you want from tests?

52 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



What Do You Want From a Diagnosis?
When the system fails a test, we would like the failure message to help us correct the problem
at minimal cost. In his book Principles of Software Engineering Management, Tom Gilb
identifies ten distinct activities involved in the process of correcting software errors:

Recognize the problem
Assign someone to correct the fault
Collect tools
Analyze the problem
Propose a correction
Inspect the proposed correction
Implement the correction
Test the implementation
Evaluate the test results
Recover from the effects of the errors

Each of these activities costs time, money, and effort. The first activity, recognizing the problem,
is one of the primary purposes of running tests. We would like to discover the problems in our
software before they cause damage.

Once we recognize that the system has a problem, the next challenge is to analyze the
problem, to understand the problem so we can correct it. We want to trace the problem from its
symptoms to its source.

Understanding the problem is often the most costly and variable part of the correction process.
To help reduce these costs, and potentially the costs of the subsequent activities, we test
automators can make the effort to gather potentially useful information and present it in ways
that can guide us from symptoms to source.

Failures and Faults
When I’m analyzing a problem in software, I find it helpful to distinguish between failures and
faults.

A failure is an observed difference between the results we want and the results the system
produced. This is the starting point of our analysis. We have observed a failure, and we don’t
know the cause of the failure. Actually, at this point we don’t know which system is failing – the
system we’re testing, the test system itself, or some other system that affects the test results.
All we know is that something has produced a result we don’t want.

53 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



A fault is a defect in the system that, under certain conditions, produces a failure. When we
analyze a problem, our goal is to identify the fault so we can fix it.

A third helpful distinction is conditions. Under what conditions does the fault lead to a failure?
Often in our analysis we experiment by changing the conditions, observing the results (perhaps
including additional failures), forming hypotheses and models about the system, and changing
conditions again.

Information From Automated Tests
To trace a failure to a fault, we need information. Some of the information we want comes in the
form of relatively static descriptions of the system – for example, requirements documentation,
design diagrams, and source code. Other information comes from running our tests. We can
write tests to provide some of the information we need, in a way that helps us understand
failures.

Our automated tests may not be able to point directly to the fault, but they can describe three
very important things: The responsibility being tested, the failure, and the interesting events
that occurred during the test.

Describe the Responsibility
The test code is part of the diagnostic message. That’s one good reason to make your test code
as clear and descriptive as it can be. Here are some ways to make your test code more useful
for analyzing failures.

Test Suite Name

Different test tools offer different ways to specify suites. Unit testing tools typically use object
packaging mechanisms from their native programming languages specifically classes and
packages, to organize tests into suites.

Cucumber uses feature files. Robot Framework uses your disk’s directory structure to organize
tests into suites.

54 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



In Rspec, you use describe blocks to identify the things being tested, and context blocks to
identify the context in which the thing is being tested. And these blocks can be nested:

describe5Stack5do

5555context5"when5the5stack5is5empty"5do

55555555describe5"#push"5do

555555555555#5Tests5for5push5with5an5empty5stack5go5here

55555555end

55555555describe5"#pop"5do

555555555555#5Tests5for5pop5with5an5empty5stack5go5here

55555555end

5555end

end

Each of these describe and context blocks identifies a suite of tests. The outer describe
contains all of the tests for the Stack  class. The context block is a suite that contains all of the
tests for an empty stack. The inner describe blocks each contain the tests for what a particular
method must do when called with an empty stack.

Whatever mechanism your test tool uses, most test tools display the suite name in some way
when tests fail.

Name your test suites so that they identify the general area of the responsibility tested by the
tests in the suite. This ensures that the tool’s display indicates which areas of responsibility
were satisfied and which produced the failures. This information can quickly guide problem
solvers to the relevant code in the system.

Test Name

Different test tools use different mechanisms to specify individual tests. Unit testing tools
typically specify tests as individual methods. And most unit testing tools identify test methods by
means of a naming convention (e.g. methods whose names begin with test ) or by some form
of annotation.

In Cucumber, each feature is an individual test. In Rspec, you use an it statement to write an
individual test.

Name each test so that it identifies the specific responsibility being tested. Often you can use
the suite name to identify the component being tested, so individual test names need not
include this information. In Naming Unit Tests I describe how to name tests to indicate the
context, stimulus, and result.

Sometimes you can put the context into the suite name, so that you need not include the
55 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



information in the individual tests. The Rspec syntax lends itself nicely to this idea. You can put
the context in a context block, and the individual stimuli and results in the it blocks. For
example:

describe5Stack5do

5555describe5"#push"5do

55555555context5"when5the5stack5is5empty"5do

555555555555it5"places5the5pushed5item5on5the5top5of5the5stack"5do

5555555555555555...

555555555555end

55555555end

5555end

end

If this spec fails, the failure message includes all of the information from these nested pieces:

Stack#push when the stack is empty places the pushed item on the top of the stack

Test Setup Name

Many test tools allow you to put common setup code for a suite into a single place in the suite.
Unit test tools typically allow you to mark a method as a setup method. Cucumber has a
background block where you establish the starting conditions before each feature. In Robot
Framework, you can include a Test5Setup  setting that identifies keywords to run before each
test.

Whatever the mechanism, you can give your setup code a name that describes the conditions it
establishes. For example, if you are testing a web application, and a setup method in your JUnit
class leaves you logged in on the home page, you can name the setup method like this:

@Before

public5void5loggedInOnHomePage()5{

5555//5setup5code5goes5here

}

When a failure occurs in a method in this suite, problem solvers will quickly be able to
understand the conditions that were established before the test ran.

Test Code

The test code itself can guide problem solvers by describing three parts of the responsibility
being tested. See Tests as Examples of System Responsibilities for ideas about writing
expressive test code.

56 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Describe the Failure
For many of your tests, failures will be detected by the assertion statements that you write. See
Diagnostic Assertions for how to write assertions so that the failure messages aid in diagnosis.

Don’t Repeat Yourself

If you use informative names, and you write the test code to describe the essence of the test
clearly, there is no need to repeat that information in the assertion failure message.

Unhandled Exceptions

Some failures will be caught in ways other than via your tests’ assertions. It is common in
automated tests for failures to come from the tests’ runtime environment, or from the drivers
and other library code used by the tests.

Here is an example of a failure triggered by a driver. Suppose your test uses WebDriver to
access html elements in a browser’s DOM. If your test tries to access an element that does not
exist in the DOM, the Seleniuim server will return an error code, and the WebDriver instance in
your test will throw a “No Such Element” exception.

The tests’ runtime environment (such as the Java Virtual Machine, or JVM) can also trigger
failures. A common type of failure is a null pointer exception, or NPE. Your test code (or code in
some library used by your test) attempts to act on some object, but the object does not exist.
When the code tries to dereference the object, the JVM throws a null pointer exception.

If your code does not catch an exceptions thrown by drivers, libraries, and the runtime
environment, the exception will bubble up to the test framework, which will report a failed test.

Exceptions thrown by these sources are usually less informative than exceptions thrown by the
assertions you write. When you write assertions, you know the context and the intent of each
assertion, and you can write your assertions so that failure messages include the most helpful
information.

But the code that throws these externally-generated exceptions cannot know the intent and
context of your test. They know the low-level details of what went wrong, but they don’t know
what your test was trying to accomplish at the time.

You may choose to write your test code to catch these exceptions and suppliment them with
further information. Whether that’s worth the effort depends on how often your tests experience
such externally-generated exceptions, and how much additional time you spend diagnosing the
failures because the exceptions don’t give you the specific information you need.

57 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Describe Interesting Events
Often as we’re solving a problem we need to know more than what responsibility we were
testing and what failed. We also need to know what interesting events happened along the way.

Screen Capture

If you are testing through a graphical user interface (GUI), you may want to capture screenshots
or videos of the application’s display.

Screenshots. Screenshots are generally easier to obtain than videos.

The driver you are using to interact with the GUI may offer a facility for taking screenshots.
For example, some of the browser drivers included in Selenium can take snapshots of the
browser window.
You can likely find open-source or third-party libraries that can capture images of the
computer screen or a specific window. With a little effort you can incorporate these into
your test code.
It may be possible to use your computer’s screen capture facilities. For example, on a Mac
you can make your test programmatically issue a keystroke to capture an image of the
entire screen.

A minor disadvantage of screenshots is that you have to decide when to take them during the
execution of a test.

A way around this disadvantage is to arrange for all GUI interactions to flow through an adapter
that automatically takes a snapshot before issuing any command that might change the display.
Sauce Labs On Demand offers just such a feature. Every time your code sends a Selenese
command to the Sauce Labs Selenium server, the server takes a screenshot before performing
the command.

Videos. Video capture is increasingly popular for automated tests. Many test tools offer no
direct support for videos, but you can typically find a third-party application chat your tests can
use to record an entire test run.

Discarding Screen Captures. Screen images and videos can take up a lot of space on your
disk. Common practice here is to retain screen captures only for a short time. When you are
confident that you will not need them, throw them away. My clients often retain screen captures
for failed tests for up to a week, but discard screen captures for successful tests after a day or a
few hours. If they are still working on a problem after a week, they make a copy of the relevant
screen captures so that they won’t be purged.

58 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Logs

When a test fails, we often want to know not only the nature of the failure, but also the relevant
conditions and events that occurred while the test was running. A listing of such events is called
a log.

There are two primary ways to log information about a test run: bare printouts, and logging
systems.

Bare printouts. One way to create this information is to add statements to the tests to print
information to the console:

login(FRODO_BAGGINS);

System.out.println("Logged5in");

Bare printouts have several drawbacks in tests. First, they always print out, whether we want
the information or not. This can clutter the console with noise. We could solve this problem by
surrounding the printouts with conditional statements, but that clutters the test code, making it
more difficult to understand.

A second drawback is that all printouts appear as if they had the same level of significance.
Printouts of major events and of minor events look more or less the same. How important is it to
know that we’ve logged in? We could solve this problem by inserting information into the
printout, but that clutters both the test code and the printed information.

A third drawback is that a bare printout lack some of the context that would help us understand
the meaning of the printouts. If we see a line that says “Number of search results: 37” on the
console, it may not be easy to understand why this matters unless it’s preceded by other
printouts that establish the context.

Logging systems. To overcome some of the drawbacks of bare printouts, you can use a
logging system. It’s a good bet that there are numerous freely available logging systems for
whatever programming language you are using.

In Java, I use a logging API called SLF4J  and an implementation called Logback , but
there are literally scores of Java logging systems that you could use.

Logging systems typically have several features that bare printouts do not:

A way to indicate the significance of each log event.
A way to categorize each log event by associating it with a category in a tree.
A way to indicate, when running tests, which log messages you want to see. You can filter
by significance, by category, or both.

[23] [24]

59 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



A way to indicate, when running tests, how you want each log message to be formatted.

Categories. With SLF4J, you write each log event using a logger. You can have as many
loggers as you like in your system, and each logger represents a category of information.
Typical use is to create one logger per class, and to use the Java package hierarchy as the
categorization scheme.

package5com.dhemery.foo.bar;

...

public5class5MyClass5{

5555Logger5log5=5LoggerFactory.getLogger(getClass());

5555...

}

This creates a logger called “com.dhemery.foo.bar.MyClass”. It also places the logger into the
“com.dhemery.foo.bar” category, which is itself in the “com.dhemery.foo” category, and so on.

These categories are useful for filtering. (See below.)

Significance. To write a message to the log, you first decide the log level of the event that you
want to describe. The log level indicates the significance of the event. A typical logging system
has a hierarchy of log levels:

FATAL (the most significant level) indicates that the event is so severe that execution
cannot proceed.
ERROR indicates a serious problem that will likely subsequently affect subsequent
operations.
WARN indicates a condition or event that may adversely affect subsequent operations.
INFO indicates a major event in the life cycle of the test.
DEBUG Indicates that information this event is likely to be useful when debugging a
problem.
TRACE (the least significant level) reports information that is of very limited use even when
debugging.

The log level of an event is useful for filtering. (See below.)

60 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Many logging systems have logging methods dedicated to each of these common log levels. To
log an event at a given level of significance, you call the log method associated with the log
level:

public5void5myMethod()5{

5555...

5555login("frodobbaggins");

5555log.debug("Logged5in5as5frodobbaggins");

}

The debug()  method logs this event as a debug level event.

Depending on how the logging system is configured, the message printed to the console might
look like this:

DEBUG - Logged in as frodo-baggins - myMethod() - MyClass.java line 33

Note that the logging system automatically discovered and displayed some of the context of the
event: the Java file, `method, and line number of the log statement. This means that you need
not clutter your test code by writing those context etails explicitly into your log messages.

Filtering, formatting, and routing. Logging systems provide three great benefits over bare
printouts:

Ability to filter which log messages are displayed.
Ability to format log messages.
Ability to route different log messages to different destinations.

These features are typically configured at runtime, independently of the test code that logs the
events. This means that when you run the tests, you can configure filtering, formatting, and
routing to suit your problem solving needs.

Filtering. You can filter by log level. For example, you can set a filter to display messages that
are DEBUG level or worse.

You can filter by category. For example, you could configure the logging system to display log
events only from the “com.dhemery.foo.bar” category.

61 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Formatting. You can format the log output by configuring the logger to include different
elements of the context of a log event. You can, for example, include or exclude:

The date and time of the event.
The debug level of the event.
The category of the event.
The the name of the class (the simple name or the full package-scoped name) in which the
event was logged.
The name of method in which the event was logged.

Some logging systems support a variety of log file formats, such as plain text, XML, or HTML
output.

Routing. Some logging systems allow you to route logging information to a variety of
destinations, each independently configurable. Some of my clients log only INFO-level or higher
events to the console, but log ALL events to HTML files that are stored with other test results for
use in debugging. And they log each test class’s events to a separate file.

Get to know your logging system. Logging systems are all different, and they’re all complex.
But the information you can produce with a logging system is extremely helpful when you are
trying to track down a test failure.

Get to know your logging system.

Test Your Diagnostic Messages
When you write an assertion, try to run it in conditions where it fails. This allows you to see what
an error looks like from the assertion, so you can evaluate whether it gives you the information
you need, expressed in a helpful way.

Run the test so that the assertion fails, and look at the failure message. Does it tell you
everything you want to know about the failure? Is it easy to interpret? If not, adjust your test
code to give a more useful diagnosis.

Test-First Diagnosis

It is easier to evaluate the usefulness of failure messages if you develop the system test first.
You write a test, and because you haven’t yet implemented the feature you are testing, the test
fails.

Before you write the code to pass the test, take a look at the failure message. If it doesn’t give
you the diagnostic information you need, fix the assertion before you implement the feature.

62 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Fakey Breaky Tests

If you’re writing a test for a feature that already works, consider testing each assertion.
Temporarily put an error either into your test or into the system you’re testing so that the
assertion fails.

If the assertion message doesn’t give you the diagnostic information you need, fix the assertion.

And remember to correct the temporary error before committing the code to version control.

Final Words
Rule #1: Make your automated diagnoses informative and trustworthy.

Rule #2: Never (fully) trust an automated diagnosis.

[25]

63 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Diagnostic Assertions
When we write an assertion statement, naturally we want to make the code expressive. We
want the assertion statement to include all of the information that matters to the assertion, and
no extraneous information. We want it to be clear to the reader just what we are asserting.

When writing assertion statements, test automators often neglect an important consideration:
the diagnostic value of the message that is displayed if the assertion fails.

Given how carefully we craft our assertion statements, it’s a shame when the assertion failure
message throws away important information, or when it swamps us with noise that hides the
information that we want most.

Some assertion mechanisms naturally lose information when they create failure messages.
Other mechanisms allow us to make the failure messages as clear and informative as the
assertion statements themselves.

I will demonstrate using Java, JUnit, and a few other libraries. You will find similar assertion
mechanisms and features in other programming languages and libraries.

Example
Let’s set up an example that we can use to explore the diagnostic value of different kinds of
assertions.

A class. Here is a very simple class, an item with text:

public5class5Item5{

5555private5final5String5text;

5555public5Item(String5text)5{

55555555this.text5=5text;

5555}

5555public5String5text()5{

55555555return5text;

5555}

}

64 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



A test. Here is a test:

public5void5findItemReturnsAnItemWithTextFoo()5{

5555Item5item5=5someObject.findItem();

5555assert5item.text()5==5"foo";

}

The test asks someObject  to find an item, then asserts that the item’s text is equal to "foo" .

A fault. The code being tested has a fault, and gives the item the incorrect text value "bar"
instead of the desired value "foo" .

A failure. Given that our item’s text is not "foo" , but "bar" , our assertion should fail. When
the assertion statement executes, it will detect that the value is incorrect and throw an exception
to indicate an assertion failure. Then JUnit will display the exception, including any diagnostic
message contained in the exception.

Assertion Styles
There are many ways to express our desired assertion in Java, especially if we use assertion
mechanisms from third-party libraries, such as JUnit, Hamcrest, and Hartley. Each of the
following assertion statements correctly evaluates whether our item’s text is equal to "foo" ,
and each correctly throws an exception if the text does not have the desired value.

Let’s look at each of these styles, and notice what information is included in the failure
message, and what information is lost.

The Java assert Statement
Our example test espresses an assertion using a Java assertion statement:

assert5item.text().equals("foo");

Notice that this short statement gives a lot of information about our intentions:

assert  says that we will make an evaluation, and that the evaluation is so important to our
test that we will mark the test as failed if the result is not as we’ve specified.
item  says that we will evaluate an object called item (or some aspect of item).
text()  says that we will evaluate some text.

The .  between item  and text()  says that we will evaluate the text obtained from
item .

65 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



.equals()  says that we will compare whether item ’s text is equal to some value.
"foo"  says that we will compare the item’s text to the literal value "foo" .

Each of those six pieces of information is essential to the assertion. If we remove any piece of
information, the assertion loses its meaning. (Technically, we could extract the text into a local
variable, so that our assertion need not refer to item , but let’s assume that we’ve chosen this
particular phrasing because we want to make the source of the text crystal clear.)

If we run this test and execute this assertion, the assertion throws an exception, and JUnit emits
this message:

java.lang.AssertionError

followed by a stack trace. The stack trace indicates the Java file name and line number from
which the exception was thrown. That is, it indicates the file name and line number of our
assertion statement. So if we want to understand the source of the failure, we have to navigate
to the source code and read the assertion statement. It’s a good thing we took pains to make
the assertion statement so clear, because that’s all of the information we have as we begin our
investigation of the failure.

The (Mostly) Uninformative Failure Message
Note that the failure message itself tells us only that some assertion failed. It gives us no
information at all (in the message itself) about what aspect of our assertion went wrong.
Remember that our assertion statement expressed at least six important pieces of information.
The failure message conveys only one of these: This thing that went awry was an assertion.

That’s a critical piece of information, of course, but what happened to the other five pieces,
which we took such pains to express so clearly in the code?

They were thrown away by the nature of the assertion mechanism. The Java assertion
statement consists of two parts: the assert  keyword and a boolean expression. To execute an
assertion statement, Java first evaluates the boolean expression. Then it assesses the result
( true  or false ). If the result is true , execution continues with the following statement. If the
result is false , the statement throws an exception.

In evaluating the boolean expression, the computer loses the information the original
expression, and saves only the true  or false  result. By the time the statement throws its
exception, all of the other information about the expression has been lost.

66 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The JUnit assertTrue() Method
Now let’s try another style of assertion, the assertTrue()  method from JUnit:

assertTrue(item.text().equals("foo"));

This method produces the same error message as the bare Java assert  statement:

java.lang.AssertionError

again supplemented by a stack trace that points to the assertion in the code.

The JUnit assertTrue()  method has one advantage over the Java assert  statement: You
don’t have to tell the JVM to enable it. If you want the JVM to execute assert  statements, you
have to pass a special argument to the JVM. If you don’t tell the JVM to enable assert
statements, it (quietly) ignores them.

Otherwise, the effects of assert  and assertTrue()  are similar. Each throws an
AssertionError , and neither gives you any of the other information that you so carefully crafted

into your assertion.

Improving the Java assert Statement with an
Explanation
Both JUnit and Java offer a mechanism to compensate for the limitations of the bare assert
and assertTrue()  assertions: the explanatory message (which I’ll shorten to explanation).

With the Java assert  statement, you add an explanatory message like this:

assert5item.text().equals("foo")5:5"Item5text5should5be5foo";

If this assertion fails, Junit displays this message:

java.lang.AssertionError: Item text should be foo

followed by the same stack trace as before.

That’s much more informative than before. In fact, our failure message tells us nearly everything
that the code tells us.

Am I happy? Nope.

67 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The big problem with this explanation mechanism is that it requires you to express the same
idea twice, once in the boolean expression, and again in the explanation. As with other forms of
comments in code, it is very easy (and common) for the comment to diverge from the code it
describes. You end up with failure messages that mislead.

And even if the comment stays current with the code, it is a form of duplication. If the code
changes, you also have to do the extra work of changing the comment.

Adding Explanations with JUnit assertTrue()
JUnit includes a form of assertTrue()  method that takes an explanation as its first parameter:

assertTrue("Item5text5should5be5foo",5item.text().equals("foo"));

I find this expression more awkward then the assert  statement. With the assert  statement,
the explanation follows the entire assertion. With assertTrue() , the explanation interrupts the
left-to-right phrasing of the assertion.

Still, this is better than no explanation at all The assertTrue()  explanation has the same effect
as the assert  statement explanation. If the assertion fails, JUnit displayes this message:

java.lang.AssertionError: Item text should be foo

Still Missing: The Actual Value
By adding explanatory messages to our assertions, we can restore the information that is lost
when the assertion evaluates our boolean expression.

But now I notice another bit of information that I wish were displayed in the failure message:
The actual value of the item’s text. Thanks to our explanations, we know the value is not the
desired "foo" , but what is the value?

Of course, if we’re writing our own explanations, we could easily include the actual value in our
explanatory message. But that takes extra work. Granted, it’s not a big burden, but it is extra
work.

What if there were a way to get that information (almost) for free? The actual value is assessed
somewhere during the evaluation, but it is then thrown away after the comparison is made and
we’ve determined the boolean result of the evaluation. What if we could catch the value before
it was thrown away?

We can do that. The key is to express the assertion in a way that retains both the actual value
and the desired value, even after comparing them.

68 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The JUnit assertEquals() Method
JUnit offers another style of assertion, a style that, when evaluated, retains the separation
between the value you are evaluating and the value you are comparing it to. If you want to
compare values for equality, the appropriate method is (appropriately) called assertEquals() .
It looks like this:

assertEquals("foo",5item.text());

Though this shifts the phrasing (the concept of equality now appears earlier in the expression,
and the desired value now appears before the retrieval of the actual value), we still have all six
of the pieces of information that matter to our assertion.

Our new expression is okay, if a little clumsy English-wise. At least it has all the pieces, and it
expresses each piece only once.

What happens when we run it? JUnit displays this message:

org.junit.ComparisonFailure: expected:<[foo]> but was:<[bar]>

Very interesting. By passing the two pieces of information separately to the method, we enable
the method emit a more helpful failure message. We give it two pieces (the expected value and
the actual value) and it gives those two pieces back to us in the message.

We now have a piece of information that we didn’t (and couldn’t) express directly in our test
code: The actual value of the item’s text.

Note also that we no longer get a barely informative AssertionError  that tells us only that
something went wrong, Now we get a more specific exception, a ComparisonFailure . I find this
slightly maddening. We invoked a method dedicated to equality, but the error message seems
to remember only that we were doing some kind of comparison.

Still, this is way better than, “Hey, dude, something’s busted. You figure it out.”

And best of all: We got it (nearly) for free. We didn’t have to duplicate any information in our
statement. We had only to rephrase our assertion, to rearrange the same six important pieces
of information.

So that’s two and a half of our six pieces of information that now appear in the failure message:

1. We’re asserting something.
2. We’re asserting equality (this appears only partially in the failure message, so it counts

only half).
3. We’re comparing someting to foo  (note that we’ve lost the information that it’s a string,

69 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



but let’s be generous and give this full credit).

And remember that we also get this bonus piece of information:

1. The actual value that we were evaluating.

This is an important addition. Let’s say that we now would like all seven of those pieces of
information. And we’re getting three and a half of them.

JUnit assertEquals() with Explanation
JUnit offers a form of assertEquals()  that takes an explanatory message. Let’s use that to
restore a few of the pieces that still don’t get for free:

assertEquals("Item5text",5"foo",5item.text());

Now the failure message is:

org.junit.ComparisonFailure: Item text expected:<[foo]> but was:<[bar]>

We’re duplicating the ideas of item and text, and I think we’ve done it in a way that also
expresses the relationship between the two.

But there’s far less duplication than our earlier explanatory messages, so this is progress.

Can we do better?

The Hamcrest assertThat() Method
Every assertion involves a comparison of some kind. Steve Freeman and Nat Pryce took the
very helpful step of separating the comparison from the assertion method. They accomplished
this by introducing the concept of a matcher. A matcher is an object that represents some set of
criteria, and knows how to determine whether a given value matches the criteria. Nat and Steve
created a library of widely useful matchers called Hamcrest.

Hamcrest also includes an assertThat()  method that applies a matcher as an assertion:

assertThat(item.text(),5equalTo("foo");

The first parameter to assertThat()  is the value that we want to evaluate. The second is a
matcher object. Typically you supply a matcher by calling a factory method such as equalTo() .
Hamcrest factory methods are named so that assertion expressions read informatively in the
code. The assertion above says: Assert that item’s text (is) equal to “foo”.

[26]

70 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



When a Hamcrest assertThat()  assertion fails, it throws an exception with a message like this:

java.lang.AssertionError:
Expected: “foo
but: was ”bar"

This failure message is similar in content to the JUnit assertEquals()  failure message. The
great advantage of Hamcrest-style assertions is that you can easily extend the set of available
assertions. We will leave that as an exercise for the reader.

Hamcrest also has a version of assertThat()  that takes an explanation as a parameter.
Normally all we need to do is describe the subject of the evaluation:

assertThat("Item5text",5item.text(),5equalTo("foo"));

When this assertion fails, it emits a message similar to the one from JUnit assertEquals() :

java.lang.AssertionError: Item text
Expected: “foo”
but: was “bar”

As with JUnit’s assertEquals() , at the expense of a little bit of redundancy, we have made our
failure message express all of the information that matters to the assertion.

So our assertion messages read very similarly to JUnit’s assertion messages. But Hamcrest’s
assertion statements read far more expressively in the code.

The Hartley assertThat() Method
For my own tests, I often take a step beyond Hamcrest. I often want to evaluate not only some
subject, but more specifically some attribute or feature or property of the subject. Each of the
examples in earlier sections evaluates not only item , but more specifically the item’s text as
returned by its text()  method.

I often find it helpful to write assertion statements that separate the subject from the feature. I
have created an assertion method  to help me do that:

assertThat(item,5text(),5is("foo"));

This assertion method takes three parameters. Each parameter is an object. The first object is
the subject of the assertion. In this case, we are evaluating item .

The second parameter is the feature being evaluated. In the same way that Hamcrest matchers

[27]

71 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



are objects that evaluate other objects, Hartley features are objects that extract values from
other objects. The text()  method is a factory method that produces a feature object that can
retrieve the text from an item.

The third parameter is a matcher that compares the extracted feature to the desired criteria.

In the code, this reads just the same as the Hamcrest assertion:

Assert that item’s text (is) equalTo “foo”

But notice what happens when this assertion fails:

java.lang.AssertionError: Expected: Item text “foo”
but: was “bar”

With no redudancy in the assertion statement itself , we now have a failure message that
includes every important detail of the assertion.

[28]

72 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Naming Unit Tests
Dale Emery

Last year I read Brian Button’s  wonderful article “Double Duty” in Better Software magazine
(the February, 2005 issue). One of the things I learned is that Brian is the world’s best namer of
unit tests. I visited Brian’s web site for more of his ideas and found an article called “TDD
Defeats Programmer’s Block–Film at 11”  In this article, Brian describes using the Test Driven
Development process to write a “continuous integration system” (a tool that automatically
(re)builds software systems when programmers change the source code). Here are some
examples of his unit test names:

Starting Build With No Previous State Only Starts Build For Last Change
Previous Build Number Is Incremented After Successful Started Build
Last Build Failing Leaves Last Build Set To Previous Build

What makes these names so good? I analyzed a few dozen of Brian’s test names and found
this pattern: stimulus and result in context. Let’s examine these names to identify the parts.

Starting Build With No Previous State Only Starts Build For Last Change:

Context: There is no previous state (i.e. no previous builds were done).
Stimulus: Start a build.
Result: A build was started for only the last change.

Previous Build Number Is Incremented After Successful Started Build:

Context: There were zero or more previous builds.
Stimulus: Request a build that will succeed.
Result: The build number is one more than before the build.

Last Build Failing Leaves Last Build Set To Previous Build:

Context: There were previous builds, the most recent of which is recorded in the system as
the last build.
Stimulus: Request a build that will fail.
Result: The previously identified last build is still identified as the last build.

[3]

[29]

[30]

73 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



One of Brian’s tests from a different system—an “animal factory” (a concept better left
unexplained)—is called Default Animal Is Cow.

Context: No animal type has been identified as the desired type of animal for the system to
manufacture.
Stimulus: Request that the system manufacture an animal.
Result: A new cow exists.

Now that I’ve learned the pattern that makes Brian’s test names so useful, I can use it
deliberately.

Using the context-stimulus-result scheme increases the value of tests as documentation.
The resulting names make clear what specifically is being tested and under what specific
conditions. This helps the reader to understand quickly what each test does, and what is
covered by each set of tests.

Another benefit is that the context-stimulus-result naming scheme encourages you to
clarify your thinking about each test. Each unit test establishes some set of starting
conditions, or context. Each stimulates the system. Each compares the result to a desired
result. In order to name these elements you will have to think about the specifics of each and
clarify them well enough that you can describe each in a few words.

If you’re having difficulty naming a test using this scheme, that may indicate a problem in your
test. Perhaps the test is doing too much work, or your test suite is doing too little. For example,
suppose you’re testing software to manage bank accounts, and one test is called Withdrawal
Test. We can tell from this name that the test tests the withdrawal feature in some way. But we
don’t know what specific aspects of withdrawals this test is testing.

Does Withdrawal Test test only that a withdrawal of less than the account balance reduces the
balance by the proper amount? If so, calling this test “Withdrawal Test” may indicate that your
suite of tests for the withdrawal feature is missing many important test cases. The name of the
test gives readers an overly broad sense of what the test actually tests. Does Withdrawal Test
test a score of different stimuli under a dozen different conditions? If so, it’s probably doing too
much work. The name of the test does not quickly tell readers what is being tested.

Whether Withdrawal Test is doing too much work or too little, we can improve the test by
applying the context-stimulus-result scheme. If Withdrawal Test is doing too much, we can use
the scheme to identify how to break the test into smaller, more focused tests with more
descriptive names. If Withdrawal Test tests only one tiny aspect of withdrawals and leaves other
aspects untested, we can use the scheme to create a better name for the test and to identify
other tests to write.

74 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Testing the Tests
When I’m automating a test, I often want to ensure that my test is actually testing the thing I
want it to test. So I make the test wrong in some small but meaningful way, then run it with the
expectation that it will fail. For example:

If the system is supposed display “42” in the “meaning-of-life” field, I’ll change the the test
to assert that it displays “43”.
If the system is supposed to display “42” only when the current user is “Ford Prefect,” I’ll
change the test to log in as “Zaphod Beeblebrox”.
If the system is supposed to display “42” only after Ford visits the “Restaurant at the End of
the Universe” page, I’ll change the test to omit the “visit the restaurant…” step.

I’ll do one of these at a time. I’ll make the test wrong, run it, and notice whether it still passes. If
the test now fails, and it makes sense to interpret the failure as due to my change, I’ll conclude
that the original test got that detail right, and change it back.

If the test still passes, that means the detail I changed does not have the effect I wanted, so I’ll
need to do some debugging.

If the test fails, but the failure isn’t clearly attributable to the way I broke the test, I’ll need to do
some debugging.

Once I’ve tested the test in those ways, and once the system passes the test,

I treat the test as being reasonably reliable until I discover some reason to doubt it. Here are
some occasions where I might begin to doubt that my test is testing what I thought it was
testing.

The test reports a failure. This might indicate a problem either in the test or in the system.
I believe that the system or its environment is broken, yet the test reports success.
The requirements have changed and the test no longer reflects the current requirements.

75 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Testing in Depth
George Dinwiddie , iDIA Computing, LLC

In the late 1970s, in the Co-Evolution Quarterly, the magazine successor to The Whole Earth
Catalog, Peter Warshall stated that geodesic dome houses always leak.  This was a bold and
surprising statement at the time, coming from a man who was considered one of the finest
builders of dome houses–ones that didn’t leak.

Why did he make this statement?

He went on to explain, that the design of a dome house depended on a single skin being perfect
waterproofing technology.  Traditional houses, by comparison, have multiple imperfect layers. 
There are overlapping shingles, which keep most of the water out.  Below that there’s a layer of
tar paper, which keeps out most of what reaches it.  Then there’s the plywood sheathing, which
blocks or absorbs most of what penetrates the tar paper.  Then the attic insulation….

No single layer of this system has to be perfect.

Software testing works the same way.  If you depend on one method of testing, you’re going to
leak bugs into production.

From the developers’ viewpoint, one of the things I’ve found is that good, simple design helps
to minimize the places where such problems can hide. By minimizing coupling and maximizing
cohesion, the things that change together tend to be visible together, where it’s obvious what
needs to change. In many designs I see, a change here ripples through the system and lots of
places need to accommodate a new parameter or a new property of an object. To me, this is a
point of pain, and I’ll want to clean it up. Perhaps I’ll create a parameter object that
encapsulates the tuple that needs to be passed around. Perhaps I’ll move behavior depending
on the object’s properties into the object, so the object’s collaborators don’t have to worry about
the internal changes. These things are the right thing to do, not because someone said so, but
because they reduce the incidence of errors.

If you do unit testing (or micro-testing, as Mike “GeePaw” Hill calls it  of small chunks of code
at a low level, you’ll catch most of the coding mistakes. These tests make sure the code does
what you think it does. If you test-drive your code into existence as a design technique, then
you get these tests as a side-effect.

While you’re at that level, add “negative tests” to your unit test suites. In other words, add
tests that verify that things that shouldn’t happen, don’t. This is more of a testing frame of mind
than a design one, though it may drive the creation of code that prevents bad things. A careful
developer will check edge conditions and perhaps some invalid input, depending on the
circumstances.

[31] [32]

[33]

76 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Below this, do small scale integration tests of the code that talks to other systems (such as
the database). Make sure these interfaces work correctly. At each system boundary, I generally
use an adapter or mediator class to “impedance match” the other system’s API into one
preferred by my application. In my unit tests and negative tests, I use fake adapters to give
control and visibility of the system under test to the test code. When I do this, I make
assumptions about the way the other system responds. I test these assumptions by writing tests
of my real adapter, talking to the other system, that validate my assumptions.

Then add some tests to ensure that the system works together as a whole. These are
termed system, or integration, or acceptance, or customer tests. Certainly you want the correct
operation of the main features to be tested with automated scripts. You want to test the
expected failure modes, also. The negative tests at this level, however, would lead to
combinatorial explosion if you tried to cover them exhaustively.

Hence the need for exploratory testing. Exploratory testing is interactive testing by a human
tester who is trying to find ways to surface problems. Its proponents like to point out that it’s the
best way to find bugs. I believe them, because the bugs surfaced by automated regression tests
would already be fixed. At this point, if things are done well, there’s little need for testing that
things are working correctly. Instead, the good tester will concentrate on things that are
possible, but likely not anticipated by the developers. Uncovering the implicit assumptions, and
finding holes in them, is the value of a good interactive tester.

Well-known security technologist Bruce Schneier says

“One of the basic philosophies of security is defense in depth: overlapping systems
designed to provide security even if one of them fails.”

You can’t protect your network from malicious people by relying on perimeter security.  You
have to bake security into other levels of access, too.

The same is true of testing to protect your application from bugs. Errors must be attacked at
different levels: design, implementation, and integrations. Errors must be attacked from different
viewpoints: what’s intended and what’s not intended. No one technique, viewpoint, or level will
ever be sufficient.

[34]

77 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Testing Classes in Isolation and in
Collaboration
Dale Emery

When I’m talking to programmers about writing tests for their own code, one of the questions
that comes up often is: Should we test classes in isolation from each other, or in collaboration
with each other?

I like both kinds of tests. Here’s why.

I like tests that isolate classes. When a failure occurs, the tests tell me specifically what class
failed, and what method failed. That guides me more directly to the fault — the specific code
that is broken — and saves a ton of debugging.

I like tests that exercise collaborations. When a failure occurs, the tests tell me that:

one class or the other is not fulfilling its responsibilities, or
the collaborators disagree about each other’s responsibilities, or
some other class (the “electrician” class that connects the collaborators with each other)
has wired the collaborators together improperly.

If the individual classes are well tested, I can focus my collaboration testing specifically on
wiring and agreements. And if the individual classes are tested well, collaboration test failures
tell me about disagreements and improper wiring.

When I test classes in isolation, failures guide me quickly to faults.

When I test classes in collaboration, failures tell me where the classes disagree about
each other’s responsibilities.

So I write both kinds of tests.

[3]

78 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Test-driving those “non-functional” stories
George Dinwiddie , iDIA Computing, LLC

Questions often arise about “technical stories,” especially when developing frameworks. I’ve
been test-infected for quite some time, and I don’t find much need for “technical stories.” I find
that driving the development with user stories keeps things on track much better. So, for
developing a framework, I suggest developing a rudimentary client for that framework in
parallel. It’ll help you drive things from an end-user point of view. It will also help your framework
become usable by and useful for client code.

Generally I start with the story test (or part of it, if the story is a little big). I’ll make that test pass
in a trivial way, and then use unit tests to drive completion of the story.

That works for functional needs, but what about the non-functional requirements such as
performance? I find that non-functional stories, such as performance, aren’t good candidates for
directly driving the development of code. Instead, I’d approach such a story in this manner.

I would write a story for the performance criteria and an acceptance test checking the
performance criteria. That doesn’t mean that the story is a good one for driving development,
but it’s still a business need. The “non-functional” requirements don’t make for easy TDD.

If the performance test doesn’t meet the acceptable criteria, I would profile the system and see
where the time is being spent. Most of the time, the culprit is rather well defined. Often the
solution (well, a solution) is pretty obvious. Sometimes it’s damn difficult. A new algorithm might
have to be developed.

In any event, I would use TDD to drive the new solution. That TDD would drive from a technical
basis, however, not from the story test. The story test would just verify if the target performance
had been met.

For a simple example, the story might be “Display the sorted list of froobles in less than 1
second.” A performance test written for the frooble display might show it takes 2.5 seconds.
Profiling the application shows that 1.9 seconds of that time is spent in the bubble sort routine.
Perhaps the decision is made to use a merge sort. I would test drive the writing of the merge
sort routine. Then I would substitute the merge sort for the bubble sort and run the acceptance
test. Great, it now takes 0.9 seconds to display the sorted list of froobles. We’re done, for now.
Non-functional requirements have a way of popping up again in the future, as the system grows
and evolves.

[31] [32]

79 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Design for Testability
George Dinwiddie , iDIA Computing, LLC

I first encountered the issues of testability when working with integrated circuit design in the
1980s. The same issues apply to software systems.

1. You want to be able to easily put the system into a known state. It’s best if you can get to
the state you want for your test without going through a number of interactions or other
states on the way.

2. You want to be able to drive internal nodes of the system so that you can test parts in
isolation. It’s much harder to test everything through the GUI, public API, IC pins, or
whatever is the normal interface.

3. You want to be able to sense internal nodes of the system so that you can test parts in
isolation. Like being able to drive internal nodes, this reduces the combinatorial complexity.

4. The special access you add for testability does add some complexity, can provide new
failure modes, and might leave some paths untested. Be aware of this and consider what
these issues are for your system.

Your work gets a bit easier if you consider this as part of building the system, rather than just as
part of testing it after the fact. If you build your tests first, the tests will specify the state and
access you need for testability. Running these tests while the system is built will result in
testability appearing almost magically.

For ICs, the first level of making a circuit testable was to the internal state predictable and
discernible.  Sometimes this was accomplished simply, by having the power-up state known,
rather than random, and by being able to clock internal nodes into a shift register to be read out
on an output pin in a special test mode.  That was enough to make it testable, but not generally
enough to make it easy to test.

Being able to drive internal nodes to various known states gave a lot more power, allowing “unit
testing” of various blocks of circuitry.  This generally required some additional hardware added
just for testability, but paid handsome dividends in reduced time to test units in production.

With ICs, much of the expense is in the packaging, and that expense was significantly related to
the number of pins.  Testing equipment evolved to do the equivalent of “the bed of nails” used
on circuit boards, but applied to pads on the circuit die that were never bonded out to pins.  This
allowed easier access to internal nodes, both for driving state and for reading it, prior even to
slicing the wafer into individual chips.  The heads that probed the circuit had a small nozzle to
spray dye on failed circuits so they could be discarded before packaging.

[31] [32]

80 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



With software, the ability to drive and access internal nodes is much easier–often not requiring
any additional logic.  Sadly, many programs manage to make these internal nodes inaccessible,
in spite of the lack of cost to do otherwise. While the hardware world acknowledged the cost
savings of adding transistors (and chip area) to reduce the cost of testing, many in the software
world will argue against making a method “protected” instead of “private” so that it can be
overridden for the purpose of testing.

Well designed code, like well designed circuits, contain the complexity better and are therefore
easier to adequately test.  This is, to me, an important point.  We’re very likely to miss stuff. 
Let’s make it as hard as possible to miss stuff.  And let’s make it as easy as possible to notice
when we’ve missed stuff.

In the words of C. A. R. Hoare,

There are two ways of constructing a software design: One way is to make it so simple
that there are obviously no deficiencies, and the other way is to make it so complicated
that there are no obvious deficiencies.

81 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Appendices

82 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The testers get behind at the end
George Dinwiddie , iDIA Computing, LLC

It’s a very common complaint, such as this one left on the Scrumdevelopment yahoogroup

Usually in different phases, workload for tester and dev is different. E.g. when a project is
coming to the end, most of the tasks will be test.

There are a couple of big red flags waving at me in those two sentences.  One is “different
phases.” Why should a software development project, especially one only a couple weeks to a
couple months long, have phases?  The other is, at “the end, most of the tasks will be test.”
Postponing testing to a phase at the end has never worked very well.  It always results in the
testers being behind at the end.

Does this situation sound somewhat familiar to you?  If so, what can we do about it?

Many teams try to live with it.  I’ve seen teams institutionalize “being behind” by implementing in
one iteration and testing in the next.  When they do that, they generally find that problems are
found in the testing, so the implementation really drags across two iterations.  The rework in the
second iteration bumps new work planned for that iteration, so things continue to slide.  And
since it’s hard to tell when a bit of work really is completely done, it’s hard to know how much
work fits into an iteration and when the release will be ready.  Often things feel the same as
they did before going to time-boxed iterative development.  That’s no surprise, because this
really isn’t time-boxed iterative development.  It’s waterfall phases in sheep’s clothing.

Just don’t do it.  Get things completely done and tested before moving on to the next thing.

But how?  Don’t you have to wait until the code is written before you can test it?

No, you don’t.  Start when the product owner is describing what is to be done.  Distill that down
to the essence of the user story.  Make sure that the product owner agrees that this potentially
automatable distillation is what is desired.

Then, while the developers are hard at work implementing the functionality, the testers should
be automating the test that verifies it.  To be sure, this is often something the testers, and the
organization they work for, find unfamiliar.  It’ll go a little slow and shaky while you learn.  It’s
completely understandable that testers will need some assistance from the developers as they
automate the tests–after all, test automation is a form of programming.

[31] [32]

[35]

83 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The bottom line is that the story isn’t ready for acceptance until both the implementation and the
test are done, and the test passes.  That’s the minimum, but take a further look, too.

Over time, this will get easier.  The testers will learn to do more test automation with less help. 
The resulting set of regression tests will grow, giving quick feedback that functionality that
worked before, still works.  Instead of the testers getting further and further behind as they
continue to check the same functionality iteration after iteration, they’ll get further ahead
because running these tests takes about the same amount of time.  They’ll have more time to
do exploratory testing, and less of that exploratory testing will have to cover basic functionality.

It’s hard work to make automated acceptance testing a success.  In the end, though, it’s the
only thing that can make testing a success in time-boxed iterative development.  If you don’t
make it work, I guarantee the testers will get further and further behind.

84 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Planned Response Systems
Dale Emery

I first learned about the idea of planned response systems from III, a colleague and friend of
mine. I later read about the idea in depth in McMenamin and Palmer’s profound book Essential
Systems Analysis.

The idea of planned response systems is fundamental to how I think about programming and
testing. I encourage you to notice what happens when you think about software systems as
planned response systems.

A planned response system is a system that responds in planned ways to events in its
environment.

For example, a software system is a planned response system — it responds in planned ways
to users’ actions.

In an object-oriented software systems, each object is a planned response system — it
responds in planned ways to messages sent by other objects.

Planned response systems produce two general kinds of results: They send messages to
entities outside of the system boundary, and they make changes to the essential memory of the
system.

An event is a significant change in the system’s environment. A change is significant to the
system if the system is obligated to respond to the change in a planned way.

Events fall into two broad categories: Changes initiated by entities in the system’s environment
(e.g. users or other systems), and temporal events caused by the passage of of time.

For example, an ATM is obligated to respond in a planned way to a user’s request to withdraw
cash. The user’s request is an event.

A system responsibility is a system’s obligation to respond to each notification of a specified
kind of event under specified circumstances by producing a specified set of planned results.

The specification of a system responsibility consists of three parts: A specification of a kind of
event, a specification of a set of circumstances, and a specification of the set of planned results
that the system is obligated to produce in response to being notified of an event of that kind
under those circumstances.

A system becomes obligated to respond to an event when a system designer allocates that
responsibility to the system.

[3]

[36]

85 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The essence of a planned response system is the set of responsibilities allocated to the
system, independent of the choice of technology used to implement the system.

The definition a system’s essence makes no mention whatever of technology inside the system,
because the system’s essential responsibilities would be the same whether it were implemented
using software, magical fairies, a horde of trained monkeys, or my brothers Glenn and Gregg
wielding pencils and stacks of index cards.

One way to identify the essence of a system is to indulge in The Fantasy of Perfect
Technology. Imagine a system implemented using perfect technology. Then ask yourself some
questions about the quality attributes of the system.

How fast would it respond? If it were made of perfect technology, of course it would respond
instantly, with zero delay. How many users could use it at once? An infinite number of users.
How much information could it store? An infinite amount. How often would it break? It would
never break. How long does it take to start up? None, because it’s always on and always
available. How much energy would it use? It would use no energy; heck, it might even generate
energy for free.

The one glaring flaw of perfect technology is that it does not exist. Real-world technology is
imperfect. That’s what makes this exercise a fantasy. But it’s a useful fantasy, because it helps
us to separate the system’s essential responsibilities from the temporary constraints of current
technology.

Note that we apply the Fantasy of Perfect Technology only inside the boundary of the system.
Even in our fantasy, the world outside of the system is made of real, imperfect stuff, with which
the system will have to interact.

Now apply the fantasy to your own system. What responsibilities would your system have even
if you could implement it using perfect technology? That set of responsibilities is your system’s
essence.

The essential memory of a system is the set of data that the system must remember in order to
fulfill its obligations — that is, in order to respond as planned to future events.

For example, an ATM must remember users’ account balances in order to determine whether to
satisfy users’ requests to withdraw money.

86 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The Anatomy of a Responsibility
Dale Emery

Because the concept of system responsibility  is so foundational to how I develop and test
software, I want to expand on it. Recall that I defined a system responsibility as a system’s
obligation to respond to each notification of a specified kind of event under specified
circumstances by producing a specified set of planned results.

A system responsibility includes three parts:

A stimulus that triggers the system to respond to an event.
A context in which the system is required to respond to the stimulus.
A set of results that the system is obligated to realize in response to that stimulus in that
context.

Responsibility

Stimulus
A stimulus is a message, sent by someone or something outside the boundary of the system,
that informs the system of an event to which it is obligated to respond. The stimulus has a
name, which may identify either the event that it represents or the planned response that the
system must carry out. The stimulus may include additional information about the event.

Stimuli are delivered to a system through its interfaces. An interface defines a set of messages
to which a system responds, and the mechanisms by which those messages are delivered. For
GUI systems, the interface includes a suite of windows, forms, buttons, text fields, and other

[3]

[37]

87 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



mechanisms that translate user gestures (mouse clicks, key presses) into messages. Web-
based systems receive stimuli through HTTP requests and other interfaces. Smaller scale
systems, such as objects inside a software application, expose Application Programming
Interfaces (APIs) that define the set of methods to which internal objects and subsystems
respond.

Result
A result is an effect that the system realizes in response to a specified stimulus in a specified
context. A result may be either a message delivered to someone or something outside the
boundary of the system or a change in the system’s internal state.

GUI systems deliver messages through forms, windows, screens, audio devices, and other
output devices. Web-based systems deliver messages through HTTP responses and requests.
An application’s internal objects and subsystems deliver messages through method calls and
method return values.

In addition to delivering messages to external entities, systems also respond to events by
recording information internally, and by making changes to that internal information. The
information may be stored inside the running application, in a database, in files on the
computer’s file system, or other storage mechanisms. The information that a system stores in
order to guide its responses to future events makes up the system state.

Context
Sometimes a system’s planned response depends not just on information delivered through the
stimulus, but other information as well. The context for a given responsibility is all of the
information other than that delivered in the stimulus that influences the results that the system is
obligated to realize in response to an event. The context may include information about the
state of the system itself — that is, information that the system previously recorded in its internal
memory about prior events. The context may also include information that the system can
observe across its boundary — information that the system must request from external entities
in order to fulfill the responsibility.

88 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



The Unbearable Lightness of Faking
Dale Emery

If you want to test class in isolation, but the class works with a collaborator, you may need to
provide a fake collaborator for the class to work with. A fake collaborator provides useful
isolation in two directions:

It isolates the test from the quirks of the real collaborators. This makes failures more
informative: If the test fails, the fault is likely in the test subject, and not in the collaborator.
It isolates the real collaborators from the test. This is important if the real collaborator is,
say, the corporate accounts receivable database. You don’t want your tests messing with
that.

Fake collaborators often provide other benefits over real collaborators. One benefit is that fake
collaborators increase testability by increasing your control over the test subject’s
environment. It’s usually easier to set up a fake collaborator to feed your test subject a
particular data value than to set up the real collaborator to do the same thing. And if the real
collaborator takes a long time to do its work, you can gain control over the speed of the test by
writing a fake collaborator that takes essentially no time at all.

Fake collaborators also increase testability in another way: They give you greater
visibility into the results produced by the test subject. Sometimes it’s difficult or time
consuming to observe what data the test subject delivered to a real collaborator. If you write a
fake collaborator, it’s easy to instruct it to remember the data that the test subject delivered. And
it’s easy to gain access to that information so that you can compare it to your expectations.

I’ve identified a number of jobs that I often want fake collaborators to do for me when I’m writing
tests. Each of these jobs helps me to gain control over the test environment or visibility into the
test results.

1. Fill in an argument to a method call. Suppose the test subject requires me to pass an
argument to it — either through the constructor or through the method I’m testing — but
the argument is never used during the test. In this case, all I need the “collaborator” to do
is to fill in a value in the method call. If that’s all I need, I can pass null .

2. Accept calls from the test subject. If the test subject calls the collaborator’s methods,
but test doesn’t care what the collaborator does, I can write a fake collaborator with dummy
methods. If the interface specifies that a method doesn’t need to return anything, I can
simply write a dummy method with an empty body. If the method must return a value, I can
write the dummy method to return a simple default value, such as 0 , null , or false .
Objects like this, and similar objects with very simple default behavior, are often called Null
Objects.

[3]

89 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



3. Provide inputs to the test subject. Sometimes the test subject requires a value other
than 0 , null , or false  in order to run. And sometimes I’m writing a test to determine
whether the test subject responds appropriately when it receives specific interesting values
from its collaborators. In either case, I enhance the fake collaborator to store an
appropriate value and deliver it to the test subject when called.

4. Record outputs from the test subject. Sometimes I want to know whether the test
subject sends the right information to the collaborator. I can write the fake collaborator’s
methods to store the inputs it receives from the test subject. And I can write accessor
methods in the fake collaborator, if necessary, so that the test method can retrieve them.

5. Verify outputs from the test subject. Sometimes it’s useful to have the collaborator do
the verification itself, rather than having the test retrieve values from the collaborator and
verify them. When I want this, I can create a mock object, an object that has expectations
and can verify them. I can either write my own mock objects, including the verification
methods, or I can use one of the numerous mock object libraries that make mocking
easier.

6. Verify what methods the test subject calls. Sometimes I want to verify not only whether
the collaborator received the right values, but also whether the test subject called all of the
right methods. And sometimes I want to make sure the test subject does not call certain
methods. Mock object libraries typically provide ways to verify function calls.

7. Verify the sequence in which the test subject calls method. Every now and then I want
to verify that the test subject not only called the right methods on the collaborator, but also
called them in a specific order. This can be useful for testing protocols. Some mock
libraries provide a way to verify the order of method calls. Sometimes need this feature I
write a logging collaborator that simply writes each expected method call to a string and
each actual call to another string. To verify whether the actual calls matched expectations,
my test can direct the logging collaborator to compare the two strings.

8. Collaborate fully. If the test somehow requires the full behavior of a real collaborator, I
can use a real collaborator. So far, I haven’t found a need for this when I’m trying to test
classes in isolation. I do use real collaborators when my intention is to test the
collaboration, and not just one class or another.

I’ve numbered these features in order of lightness. The lighter features are easier to create; the
heavier features take more work. null  is the lightest collaborator of all, and the real
collaborator is the heaviest.

My preference when writing tests is to use the lighest fake collaborator that gives me the
visibility and control that I need for the purposes of my test. This keeps my tests as light
and flexible as they can be.

Often I start by passing the lightest collaborator of all — null  — to the test subject, and then
wait for the test tell me when I need to add more behavior to the collaborator. If the test subject
needs something other than null, I’ll find out when I try to run the test and get a null reference

90 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



pointer exception. Then I’ll move to a Null Object. If the default values returned from the Null
Object don’t satisfy the test subject, the test usually signals that with an exception or failure of
some kind, and I’ll move to a heavier collaborator.

I call this approach The Unbearable Lightness of Faking: start with the lightest possible
collaborator, and use it until the lightness becomes unbearable and I absolutely must
switch to something heavier.

91 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



If you don’t automate acceptance tests?
George Dinwiddie , iDIA Computing, LLC

If you and your team don’t use automated acceptance tests, please let me know how you
handle regression tests as the application grows larger. 

OK, I know that “acceptance tests” are somewhat a misnomer.  While they may provide a go/no
go indicator for the functionality of a user story, we all know that it’s possible that the application
passes the test and still isn’t what the Product Owner or Customer wants.  You still need to
show it to the Product Owner/Customer to get their acceptance.  Bear with me, though, and let’s
use this common term.

So, a Product Owner, a Developer, and a Tester walk into a bar sit down to talk about
something that the system under development should do.  The Product Owner describes the
user story.  The Developer and Tester ask questions (and make suggestions) until they think
they can answer the basic question, “How will I know that this story has been accomplished?”

No matter how or when it’s done, these three amigos must agree on this basic criteria or things
will go wrong.  Turning this agreement into an automated acceptance test (or three) gives it a
precision that often tests the agreement and uncovers fuzziness or conflicting definitions in the
words we use.  Automated acceptance tests help us express our expectations.

If you don’t use automated acceptance tests, how do you clearly
communicate desires (“requirements”) between the business, the
developers, and the testers?

If your testing is manually executed, or is automated using record-and-playback, then you’ll
have the problem where the testers have to wait until the developers think they’re done before
they can start verifying the functionality.  This puts the testers behind from the very beginning. 
It also delays the feedback to the developers when the functionality doesn’t behave as expected
and results in bug-fix cycles on code thought to be complete.  These things combine to slow
down the pace of development.

[31] [32]

92 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



It’s more valuable to automate those tests while the code is still written.  As development
proceeds, you can see those tests start to pass, providing a clear indication of the progress.  If
a developer writes code expected to make a particular test scenario work, but the test fails, then
you can delve into the issue right away.  Is there a mistake in the code, in the test, or just a
lingering disagreement about what we intended to do?  Automated acceptance tests that
pass express the growth of functionality in our application.

If you don’t use automated acceptance tests, how do you monitor the
progress of development?

Once the functionality works, we want it to continue working, unless we expressly decide it
should work a different way.  If we want to know that it continues to work, we need to verify
that.  That means that we need to continue to check a growing amount of functionality.  If that
checking requires significant human effort, we’ll soon be overwhelmed by it and our progress
will get slower and slower.

Computers are great for doing our repetitive grunt work.  Yes, it’s a continually increasing job for
them, too, but they’re usually faster than people, they can work longer hours, and they can
easily scale to handle more work by adding hardware.  If computers are checking that all of our
tests are still working on a daily or more frequent basis, then we rapid notification when we’ve
accidentally broken an old feature.  Automated acceptance tests express our confidence
that the system continues to work.

If you don’t use automated acceptance tests, how do you maintain
confidence that the system still works?

If you don’t use automated acceptance test, please let me know the answers to these
questions–especially the last one.

93 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



Footnotes

1. Yes, we are aware that chimpanzees are not monkeys. But “the any chimpanzee question”
just doesn’t have the same rhythm as “the any monkey question.”  ↩

2. “Refactoring with Ben Orenstein.” https://peepcode.com/products/play-by-play-
benorenstein  ↩

3. Dale Emery. http://dhemery.com  ↩

4. I learned this idea from Elisabeth Hendrickson, an extraordinary tester.  ↩

5. The examples presented here run within Robot Framework, an increasingly popular test
automation tool that allows you to write tests in a variety of formats. As you will see, Robot
Framework offers techniques to write clear, maintainable tests. Robot Framework is free
and open source. See the Robot Framework web site for further information.  ↩

6. My first concern: What’s fred  doing there? That’s a user name. I’ve given a user name
because the Create Account command (however it’s implemented) requires a user name.
Still, the user name has no bearing on password validation, so it’s extraneous for this test.
My second concern is that it isn’t immediately obvious what’s significant about that specific
password.  ↩

7. I originally counted only seven occurrences, missing the one in the name of the test. That’s
another challenge with duplication. When you have to change all of the occurrences, it’s
easy to miss some.  ↩

8. Or count the number of creates in the original test in Listing 1. Notice that by extracting
incidental details from the test into a keyword, we’ve also reduced the number of changes
we’d have to make if we switched from create to register. Bonus!  ↩

9. Notice that these new keywords uo not depend on any implementation details of the
system. They’re built entirely on our lower-level keywords. If the implementation details
change, these keywords will continue to be valid, and will not require change. Also, I’ve
changed the user name from fred  to arbitraryUserName  to help readers understand that,
for the purpose of this keyword, there’s nothing special about this user name.  ↩

10. In the real world, accepting a password means more than simply reporting that the account
was created. In addition, the system must of course actually create the account. A
complete test would verify those essential results, and not simply take the system’s word
that it created the account. Systems lie! I’ve omitted those details to keep the example
small enough to talk about.  ↩

94 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



11. There is still duplication here. We could reduce it further, perhaps by creating a
Rejects5Passwords  a keyword that takes a list of invalid passwords and checks whether

the system rejects each one. Would that make the test clearer or more maintainable? My
guess is no, but it’s worth considering. Try it for yourself and see.  ↩

12. Yes, using variables does require us to include distracting dollar signs and braces in our
test. Does the clarity of the names outweigh the distraction of the syntax junk?  ↩

13. These steps use another tool, Selenium, to drive a web browser and to interact with the
web app. To start up Selenium and a browser to run the tests, and to shut down Selenium
and the browser after the tests, we have to add another few geeky lines to our tests. In the
interest of staying focused, I won’t include those lines here, but it’s a grand total of eleven
lines of test code.  ↩

14. Though these tests use Robot Framework’s particular test format, many other open source
test tools – Fit, FitNesse, and Cucumber being among the more popular – offer similar
ways to express the essence of your tests and to hide implementation details.  ↩

15. Robot Framework: http://robotframework.org/  ↩

16. “Writing Maintainable Automated Acceptance Tests”. In this handout. Also available at
Dale Emery’s website at
http://dhemery.com/pdf/writing_maintainable_automated_acceptance_tests.pdf  ↩

17. Bob Martin’s video demonstration of the principles of writing maintainable tests:
http://vimeo.com/8041760  ↩

18. FitNesse: http://fitnesse.org/  ↩

19. FEST-Swing: http://fest.easytesting.org/  ↩

20. Robot Framework Selenium Library: http://code.google.com/p/robotframework-
seleniumlibrary/  ↩

21. Cucumber: http://cukes.info/  ↩

22. Twist: http://www.thoughtworks-studios.com/agile-test-automation  ↩

23. Simple Logging Facade for Java (SLF4J). http://slf4j.org  ↩

24. Logback. http://logback.qos.ch/  ↩

25. See “Testing the Tests” in this handout.  ↩

26. The word Hamcrest is an anagram of the word matchers. You can find Hamcrest matcher
libraries for a variety of programming languages at http://hamcrest.org/.  ↩

95 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie



27. For this and other Java code that I find commonly useful when I automate tests, see my
Hartley library. http://github.com/dhemery/hartley  ↩

28. Note that I did have to do some extra work in order to convince the failure message to
describe the subject and the feature. I had to implement the toString()  method in both
the Item  class and in my feature object class. For that small amount of work, I can now
use those classes in many assertions, and I gain the diagnostic expressiveness at no
additional cost.  ↩

29. Brian Button http://www.agileprogrammer.com/oneagilecoder/  ↩

30. “TDD Defeats Programmer’s Block—Film at 11”
http://agileprogrammer.com/2005/03/27/tdd-defeats-programmers-block-film-at–11/  ↩

31. George Dinwiddie’s blog, Effective Software Development, http://blog.gdinwiddie.com  ↩

32. iDIA Computing, LLC, http://idiacomputing.com  ↩

33. Mike “GeePaw” Hill, “They’re Called Microtests”
http://anarchycreek.com/2009/05/20/theyre-called-microtests/  ↩

34. Bruce Schneier, “Security in the Cloud”
http://www.schneier.com/blog/archives/2006/02/security_in_the.html  ↩

35. “How to find a balance of tasks for testers and devs in different phases?”
http://groups.yahoo.com/group/scrumdevelopment/message/45191  ↩

36. Essential Systems Analysis.
http://www.amazon.com/exec/obidos/ASIN/0917072308/dalehemery–20.  ↩

37. “Planned Response Systems”. In this handout. Originally published in Conversations with
Dale at http://cwd.dhemery.com/2009/02/planned-response-systems  ↩

96 of 96  Copyright © 2003-2013 Dale Emery and George Dinwiddie


