EN-GINEERS ™ T CROiN

AN 3031
[IN-CIRCUIT
EMULATOR

BY GEORGE DINWIDDIE

Build this emulator and avoid

DEBUGGING A microprocessor-
based program in assembly language
can be difficult for a home engineer.
The equipment to aid such a task—
logic analyzers and emulators—is
usually incredibly expensive. Even a
large company might not be able to
afford the thousands of dollars need-
ed for an emulator because of the
processor-specific nature of the tool.
Such was the case when | was devel-
oping firmware for an embedded pro-
cessor controlling a commercial prod-
uct. The processor in use was an In-
tel 8031, and at that time, only Intel
had an emulator for it. Obviously, In-
tel wanted a lot of money for the emu-
lator. Worse, it needed a new micro-
processor development system to
host it.

My alternative was to edit, assem-
ble, burn EPROMs, trace the execu-
tion using a logic analyzer, and
deduce where the code was going
wrong. Once | found a bug, I usually
had to start over at the edit step
before I could hunt for the next one.
This was a slow process.

A BETTER WAY
It didn't take me long to become
frustrated with this method. There had

debugging headaches

to be a better way. At the suggestion
of a microprocessor guru, | decided
to build a monitor. Because the prod-
uct hardware was mostly developed,
| designed the monitor board so that
it could function as an emulator—
plugging into the processor socket of
the application hardware.

The primary benefit of my monitor
is that it gives you the ability to patch
errors without repeating the edit,
assemble, burn EPROM cycle. Some-
times a patch alters only a byte or
two, but more often than not it in-
volves a jump to an unused section
of RAM where a hand-assembled rou-
tine is inserted.

Another handy debugging tool is
the monitor’'s breakpoint capability.
While the breakpoint in my monitor
is extremely limited and simple, it
does provide a way to verify which
path of a conditional jump was taken
without having to resort to the logic
analyzer. Furthermore, you can check
the actual values in variables and in-
ternal registers instead of deducing
them from external behavior.

Another technique I found helpful
was to insert temporary test patches
that displayed the value of some
variable each time through a loop.

This was accomplished by calling
monitor subroutines via a convenient
jump table provided at the start of the
monitor. This technique was at the ex-
pense of real-time operation, but it
provided insights into the dynamics
of the software that were unobtain-
able by any other means.

| also included some basic but nec-
essary functions that let you initialize
memory, copy a block of memory,
compare two blocks of memory, and
perform a hexadecimal dump on a
block of memory. Of course, I had to
provide commands to edit the con-
tents of memory and to execute in-
structions starting at any arbitrary
location. Finally, I added some con-
venience commands to display the
command syntax and the locations in
the jump table and to perform hexa-
decimal arithmetic.

THE PROCESSOR
The Intel 8031 single-chip microcom-
puter is the ROM-less version of the
(continued)
George Dinwiddie (13808 Wayside Dr.,
Clarksvill, MD 21029) is a software
engineer for Mitron Systems Corp. He is cur-
rently working on his M.S. degree in computer
science.

JULY: 19865« ‘B.Y T'E 181

AN 8031 EMULATOR

O6EB 9430 SuBB
@6ED 4017 JC
O6EF 940A SUBB
06F 1 5005 JNC
O6F3 240A ADD
Q6F5 020704 LJMP
Q6F8 2403 ADD
Q6FA 20E709 JB
@6FD C3 CLR
O6FE 9410 SuBB
0700 5004 JNC
0702 2410 ADD
0704 C3 GOOD: CLR
0705 22 RET
0706 D3 BAD: SETB
0707 22 RET

Listing 1: The code for performing ASCll-hexadecimal to binary conversion.

A 40

BAD . ACC <i*0?

A,#10

$+7 LUNGE St

A,#10 ;RESTORE

GOOD ; '@’ <= ACC <= 9’

A#(’0°+10-"A"+10) ;CORRECT FOR (-'0’-10)
& MAP *A’ INTO 10

ACC.7,BAD A1 gR i AL A

c

A, #16

BAD s ACE B 0F

A, #16

c

c

8051, the high end of Intel's 8-bit
microcontrollers. It has five inter-
rupts—two external inputs, two hard-
ware timers, and one hardware asyn-
chronous serial port (UART). It sports
a 16-bit external address bus and 16
bidirectional 1/O lines. The processor
has three separate memory spaces—a
64K-byte program memory space, a
64K-byte external data memory
space, and 128 bytes of internal RAM.
The 8031 even features a hardware
multiply and divide.

While this processor has a lot of
speed and power, it has its share of
problems, too. The architecture is

accumulator-based. This means a lot
of processing time and bytes of code
are used to load and store the ac-
cumulator. The instruction set is
highly irregular. For example, the only
compare instruction is a compare-
and-jump-if-not-equal. To do a com-
pare-and-jump-if-equal requires an
exclusive-or, a subtract, or a jump-
around-a-jump. A jump-less-than or a
jump-greater-than also involves extra
work. You can see some of the prob-
lems this causes in the ASCII-
hexadecimal to binary conversion in
listing 1. The instruction set also has
few instructions that are capable of

accessing the two large external
memory spaces.

THE EMULATOR BOARD
HARDWARE

The hardware design of the emulator
board is straightforward. Figures la
and 1b show the schematic diagram.
It features 4K bytes of monitor
EPROM, 8K bytes of application
EPROM space, and 8K bytes of
emulation RAM. With the current
prices for larger memories it would
make more sense to use 8K by 8
monitor and application EPROM

(continued)

» P.C. DiallLog
Televoice management system
Digitizes your voice
Saves and sends voice messages
Auto answer/Auto dial
Call store and forward
Message distribution
P.C. to P.C. communication
For IBM-PC, XT, AT and compatibles

* Votalker IB & AP
Board level speech synthesizers
Unlimited vocabulary
Text-to-speech software
Voice mode selection switch
Speech filter selection switch
For IBM-PC, XT, AT and compatibles
For Apple I, IIE, Il Plus and compatibles

* SC-01-SC-02
Phonetic speech synthesizer chips
Unlimited vocabulary

You already own a computer that can talk.

Now let it.

Meet the Votrax Family of Voice Products.

Now you can upgrade almost any personal
computer and make it more powerful than ever,
by giving it the power of speech.

* P.SS.&T.N.T.
Stand-alone speech synthesizers
Unlimited vocabulary
Text-to-speech
Parallel/RS-232 compatible
Exception word table
On-board music chip
Adaptable to most computers

* Votalker C-64
Plug in speech synthesizer
Unlimited vocabulary
Text-to-speech
Rate, volume and pitch control
Three speaking modes
Free trivia game
For Commodore C-64/128

* Software Developers Welcome
* Dealers and Distributors Welcome

V(())’Ltm 1394 Rankin, Troy, Michigan 48083
1-800-521-1350

In Michigan 313-588-0341

For a voice demonstration call

313-588-2926

182 B Y.T E *JULY1986

Inquiry 377

AN 8031 EMULATOR

16 BWR
Ic1 17 BRD
40 -PIN 29 BPSEN
SOCKET TO 30 BALE
APPLICATION
s 28 BAI1S
27 BAl4E N
> 26 BAl3 N\
25 BA1Z | N\
24 BAIl N\
23 BAIO. O\
11029 22 BAS | N\
{ 21 BA8 N\
12/:7 ———-—\
32 BA?
+5V 33 BA6 \
34 BAS '\
5 BAG)\
NOL 36__BA3
—| 10uF 37 BA2
RESET 38 BAl
i 39 BAO
\
cn
7.8 |e
|18 J1o
3,1 12MHz 1.6
¢ 1 4
2 -’Iﬂ] .
20pF l;—
5pF [
& i
18 19 OF OFE
XTAL2 XTAL1
5 a1s 128 2 18 BA15 /
EA 1c2 27 17 Al g
7|; Al4 2
8031 a13 26 4 i€ ! lBAna s
a12 |23 15 i 5 | Bal2 /
9 lrsT Al 22 61 7aus2aa P41 _|BALL
a0 23 13 | 1BA10
Ao 122 8 2 | BA9 /
as 12 11 9 | BAS8
ca
7415244
ALE e - ey
€10
i 19 7415373
Z ap7 132 9| E 11 &Bro7 18l o7 |19 BA7
CONNECT PINS 1-8 AND 10-15 Ap6 133 8 12 L1BADe 171 ¢ 06|16 BAG
IN ONE -TO-ONE ADs 132 7 [> 13 &} BADS 14, a5 |25__BAS
FORRESFONDENCE apa |5 6 {1 14 Askos T3] qaliiBat s
AD3 |36 5 15 o1 BAD3 8103 Q3 uﬂx__/
Ry Lo 4 ce 16 o1 BAD2 L qz 6 BAZ A
a1 138 3| 74Ls245 |17 o1 BADL 4 I Qil5. BAL
39 2 18 o BADO 3 2 BAG
LY DOMHL L 1O
WR RD PSEN D0 DIR O
16 2 6 19 1! BPSEN '
4 D 16 | BRD I
| 2 18 | BWR o
Ic3 1] =
QE . ica
741508
d 7415244
3

1 Lon
jz) RAMSEL

Figure la: Schematic of the 8031 emulator board, showing the central processor, UART, and address-decoding circuitry.

184 BYTE * JULY 1986

AN 8031 EMULATOR

BAIS 6 NOTE :
BAL4 sl i IC7 NO LONGER USED
/ | .
BA13 4] 74Ls30 sy e T
/ BA12 3 :
/ BAll 2 NC
1
/ BA10 1 = 11318%
BA9 12 /5 o . 4| os2s
/BAB 11 s 5 TXD JI Jo= CONN
BAO o Ic11 IC15 TO
BAD6 7] s251a 1489 TERM
/ BADS 6 g 3 Hs
/BAD4 5 RxD
/BADS e TTs [e
BAD2 1 oSR K22 /J;—
g8AD1 28
BADO 27
CLK 20
sy TS .=
= s i +5V
RD WR i
|13 10 +5V 1c8 8
T R1135A 12,13, 14,15, 16
| BAUD RATE GEN.
| +7 6 15 |4
Ic12
\ 5K
p -
\BAII e, 07 (A AR ULL-UPS
N sl oo pi et
BAS A9 D5
\BAB 28l , o 2 14 BAD4
T | sy
A6 D2
\QBAS 3 a5 p1 |32 Baol (0L L OSED. SWITCH)
Ad 4 5 BADO / 5
\2“ = 0O 010, 0 0 50
e 43 1c1e 0 0L0 75
Ny ~{ A2 2732 0 0.1.0 T
N 1 MORITOR EEROM 0 01 1 1345 | 19200 bps VIOLATES
AO 0.1.0 o 150 | TIMING REQUIREMENTS
cS OE 0.1 0 300 OF 8251
18 20 0l 1.0 600
ot 1 i1200
1,00 0 | 1800
1.0 0 1 (2000
i roes z 1.0 1 0 2800
S Ge ol o0 ; (0000-0FFF) 10 5. 43600
. 012 — (1000-1FFF) 1.5 10 0 | 4800
i o2 bl (zooo-szF)I 1 : <1) é 226%%
s £ 3 .
/)—7—E2 03 el ity ADDRESS
Bals. il 040%-(4000—4“'-’) | o BB T
Bate” 3l . OSD—;——(SOOO—SFFF) i <> paTa BUS
N\ BATERTA 06 Jo—— (6000-6FFF) ‘ {_>romz
BAl2 11, 07 lbZ— (7000-7F FF) | | .
| > Fom
I BPSEN
L l

RAMSEL

JULYS 19865 o4 BeYTHE]

185

AN 8031 EMULATOR

ADDRESS BUS [>=

DATA BUS [e

_BA1l 21 17 BAD? /
Ic17
BA10 19 2732 16 BAD6
EPROM
A9 2
B 2 (2000-2FF F) He el
BAS 23 14 BAD4
_BA?7 1 13 BAD3 /
_BA6 2 11 BAD2
_BAS 3 10 BAD1 /
BA4 4 9 BADO
_BA3 5
_BA2 6
_BAl 7
BAO 8
OE cs
Jzo 18
BPSEND—T-
Rosz—l
RAMSELD——l— T
BWR [>——
_BA1l 21 17 BAD7? /
1c18
BA10 19] 2732 16 BAD6
BA9 22 EPROM 15 BADS
(3000-3FFF)
BAS8 23 14 BAD4
\BA7 1 13 BAD3
\BAG 2 11 BAD2
BAS 3 10 BAD1
\BAA 4 9 BADO
BA3 5
BA2 6
BA1 7 I l
BAO 8 | |
OE CS
lzo 18
N\ Bais . 00 i (4000 - 47FF)
BA15 5| — 01 o— (4800 -4FFF)
— . E2 .
ROM3 [>— 1= oz bt (5000-57FF)
(5800-5FFF)

m

!
—
~n

Ic19 031

\\ BA13 3 A7211LS138 04 DB—
N 05 P—
BA12 21 a1 9

BA1l 1 o=

AQ 7
07 P

uarRT <

(6000 -67FF)
(6800 -6FFF)
(7000-77FF)
(7800-7FFF)

Figure 1b: Schematic of the 8031's ROM and RAM circuitry.

186 BYTE °* JULY 1986

AN 8031 EMULATOR

B10 29 17 BAD? / B10 19 17 BAD7
1C20 IC21
BAS 22 6116 16 BAD6 BAS 22 6116 16 BAD6
RAM RAM
A
BA8 23 (4000 47FF) 15 BADS BA8 23 (4800-4FFF) 15 BADS
BA7 1 14 BAD4 BA7 3 14 BAD4
BA6 2 13 BAD3 BA6 2 13 BAD3
_BAS5 S 11 BAD?2 BA5 3 11 BAD2 /
\ BA4 4 10 BAD1 BA4 4 10 BAD1 /
_BA3 5 S BADO BA3 5 S BADO /
_BA2 6 BA2 6
_BAl 7 _BAl 7
BAO 8 \ BAO 8
OE _WR CS OE WR CS
20 21 18 20 21 18
BAl10 19 17 BAD?7 BA10 19 17 BAD?
1C22 1C23
BAS 22 6116 16 BAD6 BAS 22 6116 16 BAD6
RAM RAM
BA8 28 (5000-57FF) 15 BADS BA8 23 (5800-5FFF) 15 BADS
BA7 1 14 BAD4 BA7 1 14 BAD4
BA6 2 13 BAD3 BA6 2 13 BAD 3
\ BAS5 3 11 BAD?2 BAS 3 g BAD?2
_BA4 4 10 BAD1 / \ BA4 4 10 BAD1
_BA3 5 9 BADO / _BA3 5 9 BADO
\ BA2 6 _BA2 6
_BA1l 7 BAl 7
BAO 8 BAO 8
OE WR CS OE WR CS
20 |21 lla]20 21 |18
ol

JULY 1986 « BYTE

187

AN 8031 EMULATOR

9600
4800 ¢

hexadecimal address
blank
8000
terminal
UART
7800 blank
blank
6000
emulation RAM
4000
application
EPROM
2000
blank blank
1000
0100
special function register monitor
0080 EPROM
internal RAM
0000
Figure 2: The emulator board's memory map.
{0}
;—]L: 20pF 9.8304MHz i 20pF
15M
+5V
TIG 11 10
Voo 01 00
74HC4060 QeS8 gg gglzo
Vss RESET o Q8 Q9. 1Ql0{ 1 Ql2i' Q13 Q]
8 |12 114 113 l 1 2 3
77
TxC. RxC TO PINS 9
3 g . * AND 25
g g S S 0 OF 8251
< ~ o™ —

Figure 3: Alternate circuit for generating baud-rate clock signal.

188 ° BiYITiE e]JULY,

1986

chips and an 8K by 8 emulation RAM
chip. When this circuit was first de-
signed, however, an 8K by 8 static
RAM chip cost approximately $50.
Using the larger memory chip could
save one 74LS138 address-decoder
chip, not to mention the additional
sockets and wiring.

The 8031's separate external pro-
gram and data memories pose a
problem in the design of the emu-
lator. The monitor and application
EPROMS are in the program memory
—that's easy enough. The RAM, how-
ever, must be in the data memory
because the 8031 has no instructions
for writing to the program memory.
On the other hand, the purpose of the
emulation RAM is to allow you to alter
the executed code. Therefore, the
RAM must also be part of the pro-
gram memory so that instruction
fetches may access it. The solution, of
course, is to map the RAM into both
memory spaces. The signal RAMSEL
is true if PSEN is true or if RD is true.
Figure 2 shows a memory map of the
emulator board.

| tried to tie up as few of the re-
sources of the processor as possible.
The exception to this is the large
amount of external memory space
used. The project that prompted this
monitor used very little external
memory, but it did use the internal
UART. Therefore, | included an 8251
USART for communicating with the
terminal rather than the internal UART
of the 8031. Clocks for the 8251 are
provided by a Motorola K1135A dual
baud-rate generator. The K1135A con-
tains both a crystal oscillator and two
divider chains in one 18-pin dual in-
line package. If you are unable to find
a K1135A, you can substitute the alter-
nate circuit, shown in figure 3, that
uses a 74HC4060 oscillator/divider
chip.

The address, data, and control sig-
nals are buffered to allow for the ex-
tra loads placed on them by circuitry
on the monitor board. If these signals
are also buffered on the target board,
it may cause excessive propagation
delays. If necessary, replace one set
of buffers with jumpers. Jumpers are
also provided to choose either the on-
board crystal or an external clock

(continued)

AN 8031 EMULATOR

from whatever application board you
are using the emulator with. Similar-
ly, there is a jumper selection enabling
the on-board reset button, the appli-
cation board reset, or both. Another
jumper allows connecting or isolating
the grounds between the target and
emulator boards.

OPERATION OF THE SOFTWARE

First, edit and assemble your source
code. Program the object code in
EPROMs and plug them into the ap-
plication code space. Note that the
code will be executed out of the
emulator board's RAM. Therefore, the
origin statement in the source code
should specify 4000 hexadecimal, the
start of RAM, rather than 2000 hexa-
decimal, the start of the application
EPROM. The interrupt vectors in the
monitor EPROM all jump to the
equivalent offset in the RAM space,
allowing use of all the interrupts with
only a slight additional latency. The
reset vector, however, jumps to the

monitor initialization code. This
scheme allows the application
EPROMs, burned for development
purposes, to be used in the final proj-
ect in some cases. In the products I
developed with the aid of this moni-
tor, the memory decoding was incom-
plete. The same EPROM was ad-
dressed at 4000 hexadecimal and 000
hexadecimal. |Editor's note: The source
code for the author's monitor program,
UGHBUG.ASM, is available in a variety of
formats. See pages 459-461 for details.]

THE COMMANDS

The commands are invoked by the
first character of the command name.
There are a few exceptions to this rule.
The internal varieties of the DUMP
and ALTER commands (which access
the 8031's internal memory) have an
"I appended to distinguish them
from their external equivalents. The
HEXMATH command is invoked with
a number sign (#). All numeric values
are expressed in hexadecimal. If you

mistype an address or a data value,
just keep typing. The monitor accepts
the last four digits entered for address
values and the last two for data
values. You need not type leading
zeros unless you're covering up a
mistake. To cancel a command that
you've started to type, just type any
illegal character. To abort a command
that outputs to the screen, merely
type any character. These rules are
consistent for all the commands.

The first command needed in any
debugging session is the COPY com-
mand. Copy the application code
from the EPROM to the RAM. Be sure
not to overwrite the last 9 bytes of
RAM: these are used by the break-
point routine.

Next, use the VERIFY command to
make sure the transfer was successful.
VERIFY indicates agreement between
two blocks of memory by doing noth-
ing. Any differences are displayed. (I
never got around to adding a memory
test. With only four RAM chips it

When it comes to problem solving, the

APL*PLUS System is the undisputed leader.

That’s because the APL*PLUS System
works with you. It goes far beyond what

application software like Lotus® or dBASE®

could possibly ever offer. And, it won’t tie
you down with the details of standard
programming languages.

The APL*PLUS System is a personal
language, with productivity features that

help you concentraté on getting answers,

190 BYTE ¢ JULY 1986

A Personal Language

rather than struggle with intricate calcula-

tions and modeling.
With it you can manipulate tables of

numbers as easily as single numbers and
get quick results from your computer using

short, simple statements.
When you've reached the limits of

other packages, move up to the APL*PLUS
System. It’s a powerful and flexible tool
that grows with you as your needs become
more sophisticated. With over 200 built-in

applications—Ilike graphics, report
formatting and communications—you
have all the tools at your fingertips to
quickly and easily solve those seemingly
impossible problems.

Best of all, the APL*PLUS System
interfaces well with software packages
you're already using—like databases,
spreadsheets, and graphics packages.
The APL*PLUS System also makes it
easy to link those packages that aren’t

AN 8031 EMULATOR

didn’t seem worth the effort. Usually,
corrupted memory was the result of
stack overflow or some other errant
code.) Always VERIFY the damages
after your code goes into the weeds.

Run your code using the GO com-
mand. If you do not specify an ad-
dress, execution will restart at the
breakpoint. (I'll talk more about
breakpoints later.) Although the most
likely starting place is 4000 hexadeci-
mal—the reset vector of the applica-
tion code—you can GO to any address
in the program memory.

| had to resort to some tricks in my
monitor's code. The 8031 does have
an indexed jump instruction, JMP
@A + DPTR. Unfortunately, the data
pointer is only easily loaded by a
constant—a variable must be loaded
a byte at a time—and the accumulator
is only 8 bits. Besides that, | wanted
to be able to restore the data pointer
and the accumulator when resuming
after a breakpoint. The simple solu-
tion, shown in listing 2, is to push the

address onto the stack and execute
a return-from-subroutine instruction.

Before running your code you may
want to set a breakpoint. The BREAK
routine requires a little explanation.
Many processors have a single-byte
software-interrupt instruction that can
be used for breaking back to the
monitor. This single byte may be sub-
stituted for the first byte of any in-
struction. When the software interrupt
is executed, it transfers control to a
breakpoint routine. The 8031 lacks
such an instruction; you have to use
a long jump instruction, which is 3
bytes long. The break address must
be aligned with the first byte of an in-
struction so that it will be executed
and not treated as data.

First you want to save the original
instructions. Because an 8031 instruc-
ton may be 1, 2, or 3 bytes long, in-
serting the 3-byte jump instruction at
a given point in the code may clob-
ber a sequence of 3, 4, or 5 bytes of
code. The number of bytes affected

is the optional final parameter of the
break command; 3 is the most con-
venient value and is the default. This
parameter is stored at the location
BYTENUM, and the bytes of code are
stored in the following 5 bytes
(padded with NOP instructions if nec-
essary). Following this, the next 3
bytes of RAM are filled with a jump
instruction to the location following
the code that was copied, that is,
BYTENUM bytes after the break ad-
dress. After all this is done, a jump-
to-the-breakpoint-routine instruction
is written at the break address. When
execution reaches the break address,
control passes to the breakpoint
routine. The breakpoint routine saves
the registers that are treated as
volatile memory and displays the
values that they contained.

A GO command without a starting
address resumes from the break ad-
dress. First it restores the saved
registers and executes the saved code,

(continued)

currently talking with each other.

With all this problem-solving power,
it'’s no wonder STSC’s APL*PLUS System
is the personal choice of so many business
professionals—financial planners,

Put the power, speed, and flexibility
of the APLxPLUS System to work for
you. See your local dealer today to get
your APL*PLUS System. If they don’t
have it, refer them to STSC or call STSC

Problem-Solving at the Speed of Thought

STSC, Inc.
2115 East Jefferson St.
Rockville, MD 20852

business analysts, actuaries, scientists,
mathematicians, engineers, statisticians,
and consultants. Especially since the
APL*PLUS System is available on a full
range of computers from desktops to
mainframes.

Inquiry 337

toll-free, (800) 592-0050.
In Maryland or Canada, (301) 984-5123.

Available nationally through Softsel, Micro Central, and
distributors worldwide. Dealer inquiries welcome.

APL*PLUS is a service mark and trademark of STSC,
Inc. PLUS*WARE is a trademark of STSC, Inc. Lotus
and dBASE are registered trademarks of Lotus Devel-
opment Corporation and Ashton-Tate, respectively.

A PLUSAWARE™ PRODUCT

©1986 STSC, Inc.
JULY 1986 * BYTE

191

AN 8031 EMULATOR

and then it jumps back to the applica-
tion code following the break address.
If you execute the breakpoint routine,
you should reset the board before at-
tempting to initiate a GO command
to a starting address. This will recover
the 5 bytes of stack space used to
store the volatile registers.

The code saved at location BYTE-
NUM+1 is restored to its original
location when a new break address is
entered or if the BREAK command is
invoked without a new address. You
should do this before a reset because
the initialization code clears BYTE-
NUM and the following locations.

The DUMP command comes in two
flavors, internal and external. The ex-
ternal version does a memory dump

of the program memory in hexadeci-
mal, showing the ASCII translation to
the right (see figure 4). If no ending
address is specified, OFFFFH is as-
sumed. A DUMP may be interrupted,
as can any command that writes to
the screen, by typing any key.

The internal DUMP command is
similar but dumps the internal RAM
and the special function registers. No
ASCII translation is shown since it is
unlikely to find ASCII strings in inter-
nal memory. The special function reg-
isters are indicated symbolically in
addition to their addresses. This is
shown in figure 5.

The ALTER command also comes in
two flavors. The external version dis-
plays the current byte from program

memory followed by a dash. If you
enter a hexadecimal value, that value
will be inserted at that location in ex-
ternal data memory. A space or a car-
riage return leaves the location un-
changed and displays the next byte
(carriage return puts you on a new
line, space leaves you on the current
line). A period or a backspace backs
up the displayed byte by one location.
Any other nonhexadecimal character
cancels the command. Remember
that the RAM on the monitor board
is mapped to both the program mem-
ory and the data memory. The ALTER
command writes to data memory be-
cause there is no way to write to pro-
gram memory. It is frequently conve-
nient to use the ALTER command to
check code, hitting carriage return af-

ter each instruction for readability.
Listing 2: The author's solution to the 8031's lack of an indexed jump The internal form of the ALTER
instruction. command accesses the 8031's inter-
Sy A nal RAM. As in the DUMP command,
060F C049 " PUSH LOBYTE whgn you reach the special function
0611 C048 PUSH HIBYTE registers (locations above 7F hexa-
0613 22 RET decimal) the name of the register is
displayed.
(continued)

UGH:d 23 ©00b1

0 1. 2 35 45 6. .7 8 9. A B G D EF
0020 92 40 23 02 90 F5 02 00 F8 02 06 B3 02 @il e
0030 06 C6 02 06 FO 902 07 20 ©2 07 48 02 97 C9 P2 06 SeH
0040 D7 02 06 CD 02 .07 6C 02 07 69 92 07 A7 02 07 A1 .| @ ol cnd
0050 02 08 16 22 ©7 70 ©2 V6 AD 92 07 BD 02 07 AF 02 NP
0060 07 EA 02 05 91 0D OA 55 6768 62 75 .67.:20 4D 43 @ . iio0. ghbug MC
0070 53 2D 35 31 20 6D 6F 6E 69 74 6F 72 2C 20 76 65 S-51 mon itor, ve
9080 72 73 69 6F 6E 20 31 2E 30 30 ©D QA 63 6F 70 79 rsion 1. 00..copy
0090 72 69 67 68 74 20 31 39 38 36 20 62 79 20 47 65 right 19 86 by Ge
PPAD 6F 72 67 65 20 44 69 6E 77 69 64 64 69 65 2E 0A orge Din widdie..
00BO 04 75 .u
UGH:

Figure-4: Sample output of the external version of the DUMP command.

UGH:di 69

g 1.2 3 4 5 6. 7 8 9 A B € D E F
60 9E AC C9 1C CE CC E4
70 88 90 80 30 ©2 20 88 A2 DF 9B EC E4 BB 46 E6 E4
80=P9® :55 81=SP :52 82=DPL :69 83=DPH :08 87=PCON:7F 88=TCON:00
89=TMOD:00 8A=TLO :00 8B=TL1 :00 8C=THO® :00 8D=TH1 :00 90=P1 :FF
98=SCON:00 99=SBUF:00 A@=P2 :08 A8=IE :60 BO=P3 :FF B8=IP :EO
DO=PSW :29 E®=ACC :01 FO=B :0D
UGH:

Figure 5: Sample output of the internal version of the DUMP command.

192 BY'TE: *-JULY 1986

Exxon

General Motors
Mobil

Ford Motor

IBM

Texaco

E.l. du Pont
Standard QOil (Ind.)
Standard Oil of Cal.
General Electric
Gulf Oil

Atlantic Richfield
Shell Qil

Occidental Petroleum
U.S. Steel

Phillips Petroleum

IV lw|N]|—

Xe]

25
(=)

—_
N

w

I

i

(o))

27
million
Americans
can’t read.
And guess
who pays

the price.

Every year, functional
illiteracy costs American
business billions.

But your company can
fight back...by joining
your local community’s
fight against illiteracy.
Call the Coalition for
Literacy at toll-free
1-800-228-8813 and find
out how.

You may find it's the
greatest cost-saving
measure your company
has ever taken.

A literate
Americaisa
good investment.

A 0 O
C&ndl Cgalition for Literacy

194 BYTE ° JULY 1986

AN 8031 EMULATOR

Both the DUMP and ALTER com-
mands use the SFR table (special
function registers table—it can be
found near the end of the monitor's
source code listing) to access these
registers. The special function regis-
ters cannot be accessed indirectly,
and the memory space they occupy
is sparsely populated. The SFR table
provides a solution to both of these
problems. Each table entry is 11 bytes
long. The first 5 bytes give the sym-
bolic name of the register. At an off-
set of five is a subroutine to read the
register. Within this subroutine, at an
offset of six, is the hexadecimal ad-
dress of the register. Eight bytes from
the start of each entry is a subroutine
to alter the contents of the register.
Some registers, such as the stack
pointer, would crash the system if they
were altered, so these entries return
an error flag instead. Some registers,
such as the accumulator, are treated
as volatile by the monitor. You can
alter them, but the monitor makes no
attempt to preserve the contents of
these registers.

The MODIFY command allows you
to enter information into external data
memory as characters instead of hex-
adecimal values. There are only two
special characters to remember within
this command. A backspace backs up
the address pointer to allow the cor-
rection of mistakes. An EOT (Control-
D) terminates the command. There is
no internal version of the MODIFY
command since it seems unlikely that
the limited internal RAM would be
used for storing strings.

The INSERT command fills a
selected block of external RAM with
a single hexadecimal byte. I used IN-
SERT rather than FILL because I in-
tended to add a FIND command.

The final three commands, HELP,
JUMPTABLE, and HEXMATH, are con-
veniences. HELP displays the syntax
of the commands and JUMPTABLE
displays the entry points to the util-
ity subroutines. HEXMATH, invoked
by #, performs both addition and sub-
traction in hexadecimal. This is con-
venient for calculating relative jumps.

Some people might consider these
last commands to be insignificant, but
| disagree. It takes a short time to for-
get the command syntax. The HELP

command also makes this tool easily
available to others. The JUMPTABLE
command allowed me to create test
patches easily. Before 1 added this
command | was constantly searching
for the monitor program listing to
look up the jump-table addresses. The
HEXMATH is a cheap convenience—
convenient to include when com-
pared with the trouble caused by
missing a jump target by 1 byte. Even
simple software such as this should
attempt to be as helpful as possible—
there are better ways to spend time.

CONCLUSION
In this article, I have focused on one
particular implementation of a debug
monitor. If you are using a different
processor it is well worth the effort to
create your own. In addition to the de-
bugging help, writing a monitor is a
good exercise. It helps you to become
familiar with a new instruction set.
Build your monitor one function at
a time. First start with displaying a
sign-on message. Then accept input
and echo it back to the screen. Once
you have the terminal interface work-
ing, add the more basic commands
such as DUMP and ALTER. At this
point you will have tools to aid you
in developing the rest of the code.
It took me two weeks to develop the
hardware and enough of the software
to start using my new tool to develop
application code. A year later | was
still adding features and refining func-
tions. Every minute [spent working on
the monitor was quickly repaid in time
saved. In the first week I used it, | ac-
complished six weeks of debugging
measured by my previous standards.
What features would I like to add to
this or any other monitor? A LOAD
command to download a hexfile di-
rectly to RAM would be first choice.
A FIND or SEARCH command to pick
out variable-length byte sequences
would be nice. A disassembler and
single-line assembler would be a great
help. These two are big jobs, though.
I got to be pretty good at patching
code with hand assembly, but I was
doing it every day. The list of features
could go on and on. A monitor is
never finished until you quit using it. m

Special thanks to Jim Gaudreault.

